Distributed Linear Quadratic Optimal Control: Compute Locally and Act Globally


Abstract in English

In this paper we consider the distributed linear quadratic control problem for networks of agents with single integrator dynamics. We first establish a general formulation of the distributed LQ problem and show that the optimal control gain depends on global information on the network. Thus, the optimal protocol can only be computed in a centralized fashion. In order to overcome this drawback, we propose the design of protocols that are computed in a decentralized way. We will write the global cost functional as a sum of local cost functionals, each associated with one of the agents. In order to achieve good performance of the controlled network, each agent then computes its own local gain, using sampled information of its neighboring agents. This decentralized computation will only lead to suboptimal global network behavior. However, we will show that the resulting network will reach consensus. A simulation example is provided to illustrate the performance of the proposed protocol.

Download