Do you want to publish a course? Click here

Size-scaling of clump instabilities in turbulent, feedback regulated disks

197   0   0.0 ( 0 )
 Added by Kamran Ali Mr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the scaling between the size of star-forming clumps and rotational support in massively star-forming galactic disks. The analysis relies on simulations of a clumpy galaxy at $z=2$ and the observed DYNAMO sample of rare clumpy analogs at $zapprox0.1$ to test a predictive clump size scaling proposed by citet{Fisher2017ApJ...839L...5F} in the context of the Violent Disk Instability (VDI) theory. We here determine the clump sizes using a recently presented 2-point estimator, which is robust against resolution/noise effects, hierarchical clump substructure, clump-clump overlap and other galactic substructure. After verifying Fishers clump scaling relation for the DYNAMO observations, we explore whether this relation remains characteristic of the VDI theory, even if realistic physical processes, such as local asymetries and stellar feedback, are included in the model. To this end, we rely on hydrodynamic zoom-simulations of a Milky Way-mass galaxy with four different feedback prescriptions. We find that, during its marginally stable epoch at $z=2$, this mock galaxy falls on the clump scaling relation, although its position on this relation depends on the feedback model. This finding implies that Toomre-like stability considerations approximately apply to large ($simrm kpc$) instabilities in marginally stable turbulent disks, irrespective of the feedback model, but also emphasizes that the global clump distribution of a turbulent disk depends strongly on feedback.



rate research

Read More

Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical simulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~0.25 resolution of the thermal dust continuum emission at ~278 GHz towards a turbulent, dense, and massive clump, IRAS 16061-5048c1, in a very early evolutionary stage. The ALMA image shows that the clump has fragmented into many cores along a filamentary structure. We find that the number, the total mass and the spatial distribution of the fragments are consistent with fragmentation dominated by a strong magnetic field. Our observations support the theoretical prediction that the magnetic field plays a dominant role in the fragmentation process of massive turbulent clump.
83 - Paul Torrey 2016
We examine the stability of feedback-regulated star formation (SF) in galactic nuclei and contrast it to SF in extended discs. In galactic nuclei the dynamical time becomes shorter than the time over which feedback from young stars evolves. We argue analytically that the balance between stellar feedback and gravity is unstable in this regime. We study this using numerical simulations with pc-scale resolution and explicit stellar feedback taken from stellar evolution models. The nuclear gas mass, young stellar mass, and SFR within the central ~100 pc (the short-timescale regime) never reach steady-state, but instead go through dramatic, oscillatory cycles. Stars form until a critical surface density of young stars is present (such that feedback overwhelms gravity), at which point they begin to expel gas from the nucleus. Since the dynamical times are shorter than the stellar evolution times, the stars do not die as the gas is expelled, but continue to push, triggering a runaway quenching of star formation in the nucleus. However the expelled gas is largely not unbound from the galaxy, but goes into a galactic fountain which re-fills the nuclear region after the massive stars from the previous burst cycle have died off (~50 Myr timescale). On large scales (>1 kpc), the galaxy-scale gas content and SFR is more stable. We examine the consequences of this episodic nuclear star formation for the Kennicutt-Schmidt (KS) relation: while a tight KS relation exists on ~1 kpc scales in good agreement with observations, the scatter increases dramatically in smaller apertures centered on galactic nuclei.
We present $sim$100 pc resolution Hubble Space Telescope H$alpha$ images of 10 galaxies from the DYnamics of Newly-Assembled Massive Objects (DYNAMO) survey of low-$z$ turbulent disk galaxies, and use these to undertake the first detailed systematic study of the effects of resolution and clump clustering on observations of clumps in turbulent disks. In the DYNAMO-{em HST} sample we measure clump diameters spanning the range $d_{clump} sim 100-800$~pc, and individual clump star formation rates as high as $sim5$~M$_{odot}$~yr$^{-1}$. DYNAMO clumps have very high SFR surface densities, $Sigma_{SFR}sim 15$~M$_{odot}$~yr$^{-1}$~kpc$^{-2}$, $sim100times$ higher than in H{sc ii} regions of nearby spirals. Indeed, SFR surface density provides a simple dividing line between massive star forming clumps and local star forming regions, where massive star forming clumps have $Sigma_{SFR}> 0.5$~M$_{odot}$~yr$^{-1}$~kpc$^{-2}$. When degraded to match the observations of galaxies in $zsim 1-3$ surveys, DYNAMO galaxies are similar in morphology and measured clump properties to clumpy galaxies observed in the high-$z$ Universe. Emission peaks in the simulated high-redshift maps typically correspond to multiple clumps in full resolution images. This clustering of clumps systematically increases the apparent size and SFR of clumps in 1~kpc resolution maps, and decreases the measured SFR surface density of clumps by as much as a factor of 20$times$. From these results we can infer that clump clustering is likely to strongly effect the measured properties of clumps in high-$z$ galaxies, which commonly have kiloparsec scale resolution.
We investigate the formation of a galaxy reaching a virial mass of $~ 10^8$ solar mass at $z=10$ by carrying out a zoomed radiation-hydrodynamical cosmological simulation. This simulation traces Population~III (Pop~III) star formation, characterized by a modestly top-heavy initial mass function (IMF), and considers stellar feedback such as photoionization heating from Pop III and Population~II (Pop~II) stars, mechanical and chemical feedback from supernovae (SNe), and X-ray feedback from accreting black holes (BHs) and high-mass X-ray binaries (HMXBs). We self-consistently impose a transition in star formation mode from top-heavy Pop III to low-mass Pop~II, and find that the star formation rate in the computational box is dominated by Pop~III until $z=13$, and by Pop~II thereafter. The simulated galaxy experiences bursty star formation, with a substantially reduced gas content due to photoionization heating from Pop~III and Pop~II stars, together with SN feedback. All the gas within the simulated galaxy is metal-enriched above $10^{-5}$ solar, such that there are no remaining pockets of primordial gas. The simulated galaxy has an estimated observed flux of $~10^{-3} nJy$, which is too low to be detected by the James Webb Space Telescope (JWST) without strong lensing amplification. We also show that our simulated galaxy is similar in terms of stellar mass to Segue 2, the least luminous dwarf known in the Local Group.
In this letter we study the mean sizes of Halpha clumps in turbulent disk galaxies relative to kinematics, gas fractions, and Toomre Q. We use 100~pc resolution HST images, IFU kinematics, and gas fractions of a sample of rare, nearby turbulent disks with properties closely matched to z~1.5-2 main-sequence galaxies (the DYNAMO sample). We find linear correlations of normalized mean clump sizes with both the gas fraction and the velocity dispersion-to-rotation velocity ratio of the host galaxy. We show that these correlations are consistent with predictions derived from a model of instabilities in a self-gravitating disk (the so-called violent disk instability model). We also observe, using a two-fluid model for Q, a correlation between the size of clumps and self-gravity driven unstable regions. These results are most consistent with the hypothesis that massive star forming clumps in turbulent disks are the result of instabilities in self-gravitating gas-rich disks, and therefore provide a direct connection between resolved clump sizes and this in situ mechanism.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا