Do you want to publish a course? Click here

Keeping it Together: Interleaved Kirigami Extension Assembly

50   0   0.0 ( 0 )
 Added by Randall Kamien
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Traditional origami structures can be continuously deformed back to a flat sheet of paper, while traditional kirigami requires glue or seams in order to maintain its rigidity. In the former, non-trivial geometry can be created through overfolding paper while, in the latter, the paper topology is modified. Here we propose a hybrid approach that relies upon overlapped flaps that create in-plane compression resulting in the formation of virtual elastic shells. Not only are these structures self-supporting, but they have colossal load-to-weight ratios of order 10000.



rate research

Read More

Graphene has a multitude of striking properties that make it an exceedingly attractive material for various applications, many of which will emerge over the next decade. However, one of the most promising applications lie in exploiting its peculiar electronic properties which are governed by its electrons obeying a linear dispersion relation. This leads to the observation of half integer quantum hall effect and the absence of localization. The latter is attractive for graphene-based field effect transistors. However, if graphene is to be the material for future electronics, then significant hurdles need to be surmounted, namely, it needs to be mass produced in an economically viable manner and be of high crystalline quality with no or virtually no defects or grains boundaries. Moreover, it will need to be processable with atomic precision. Hence, the future of graphene as a material for electronic based devices will depend heavily on our ability to piece graphene together as a single crystal and define its edges with atomic precision. In this progress report, the properties of graphene that make it so attractive as a material for electronics is introduced to the reader. The focus then centers on current synthesis strategies for graphene and their weaknesses in terms of electronics applications are highlighted.
91 - Yanbin Li , Jie Yin 2021
Kirigami, art of paper cutting, enables two-dimensional sheets transforming into unique shapes which are also hard to reshape once with prescribed cutting patterns. Rare kirigami designs manipulate cuts on three-dimensional objects to compose periodic structures with programmability and/or re-programmability. Here, we propose a new class of three-dimensional modular kirigami by introducing cuts on cuboid-shaped objects, based on which constructing two quasi-three-15 dimensional architected kirigamis with even-flat structural form. We demonstrate the proposed architected kirigamis are with rich mobilities triggered by kinematic bifurcations inherited from their composed modular kirigami, and can undergo living-matter-like metamorphosis evolving into miscellaneous transformable three-dimensional architectures and even a pluripotent platform capable of being re-programmed into curvature different surfaces through inverse design. Such 20 metamorphic structures could find broad applications in reconfigurable metamaterials, transformable robots and architectures.
Graphene kirigami (patterned cuts) can be an effective way to improve some of the graphene mechanical and electronic properties. In this work, we report the first study of the mechanical and ballistic behavior of single and multilayered graphene pyramid kirigami (GKP). We have carriedout fully atomistic reactive molecular dynamics simulations. GPK presents a unique kinetic energy absorption due to its topology that creates multi-steps dissipation mechanisms, which block crack propagation. Our results show that even having significantly less mass, GKP can outperform graphene structures with similar dimensions in terms of absorbing kinetic energy.
Over the past few years, several new methods for scene text recognition have been proposed. Most of these methods propose novel building blocks for neural networks. These novel building blocks are specially tailored for the task of scene text recognition and can thus hardly be used in any other tasks. In this paper, we introduce a new model for scene text recognition that only consists of off-the-shelf building blocks for neural networks. Our model (KISS) consists of two ResNet based feature extractors, a spatial transformer, and a transformer. We train our model only on publicly available, synthetic training data and evaluate it on a range of scene text recognition benchmarks, where we reach state-of-the-art or competitive performance, although our model does not use methods like 2D-attention, or image rectification.
Kirigami, the art of introducing cuts in thin sheets to enable articulation and deployment, has till recently been the domain of artists. With the realization that these structures form a novel class of mechanical metamaterials, there is increasing interest in using periodic tiling patterns as the basis for the space of designs. Here, we show that aperiodic quasicrystals can also serve as the basis for designing deployable kirigami structures and analyze their geometrical, topological and mechanical properties. Our work explores the interplay between geometry, topology and mechanics for the design of aperiodic kirigami patterns, thereby enriching our understanding of the effectiveness of kirigami cuts in metamaterial design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا