Do you want to publish a course? Click here

Synthesis of the Morphological Description of Cometary Dust at Comet 67P

68   0   0.0 ( 0 )
 Added by Carsten G\\\"uttler
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Before Rosetta, the space missions Giotto and Stardust shaped our view on cometary dust, supported by plentiful data from Earth based observations and interplanetary dust particles collected in the Earths atmosphere. The Rosetta mission at comet 67P/Churyumov-Gerasimenko was equipped with a multitude of instruments designed to study cometary dust. While an abundant amount of data was presented in several individual papers, many focused on a dedicated measurement or topic. Different instruments, methods, and data sources provide different measurement parameters and potentially introduce different biases. This can be an advantage if the complementary aspect of such a complex data set can be exploited. However, it also poses a challenge in the comparison of results in the first place. The aim of this work therefore is to summarise dust results from Rosetta and before. We establish a simple classification as a common framework for inter-comparison. This classification is based on a dust particles structure, porosity, and strength as well as its size. Depending on the instrumentation, these are not direct measurement parameters but we chose them as they were the most reliable to derive our model. The proposed classification already proved helpful in the Rosetta dust community and we propose to take it into consideration also beyond. In this manner we hope to better identify synergies between different instruments and methods in the future.



rate research

Read More

Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov-Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release.
Dust is an important constituent in cometary comae; its analysis is one of the major objectives of ESAs Rosetta mission to comet 67P/Churyumov-Gerasimenko (C-G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in the cometary coma, all of which require a certain level of exposure to dust to achieve their goals. At the same time, impacts of dust particles can constitute a hazard to the spacecraft. To conciliate the demands of dust collection instruments and spacecraft safety, it is desirable to assess the dust environment in the coma even before the arrival of Rosetta. We describe the present status of modelling the dust coma of 67P/C-G and predict the speed and flux of dust in the coma, the dust fluence on a spacecraft along sample trajectories, and the radiation environment in the coma. The model will need to be refined when more details of the coma are revealed by observations. An overview of astronomical observations of 67P/C-G is given and model parameters are derived from these data where possible. For quantities not yet measured for 67P/C-G, we use values obtained for other comets. One of the most important and most controversial parameters is the dust mass distribution. We summarise the mass distribution functions derived from the in-situ measurements at comet 1P/Halley in 1986. For 67P/C-G, constraining the mass distribution is currently only possible by the analysis of astronomical images. We find that the results from such analyses are at present rather heterogeneous, and we identify a need to find a model that is reconcilable with all available observations.
We report on the first major temporal morphological changes observed on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko, in the smooth terrains of the Imhotep region. We use images of the OSIRIS cameras onboard Rosetta to follow the temporal changes from 24 May 2015 to 11 July 2015. The morphological changes observed on the surface are visible in the form of roundish features, which are growing in size from a given location in a preferential direction, at a rate of 5.6 - 8.1$times$10$^{-5}$ m s$^{-1}$ during the observational period. The location where changes started and the contours of the expanding features are bluer than the surroundings, suggesting the presence of ices (H$_2$O and/or CO$_2$) exposed on the surface. However, sublimation of ices alone is not sufficient to explain the observed expanding features. No significant variations in the dust activity pattern are observed during the period of changes.
We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volatile ices. To derive the ejected aggregate sizes, we developed a model based on the assumption that the entire heat absorbed by the surface is consumed by the sublimation process of one volatile species. The calculations were performed for the three most prominent volatile materials in comets, namely, H_20 ice, CO_2 ice, and CO ice. We find that the size range of the dust aggregates able to escape from the nucleus into space widens when the comet approaches the Sun and narrows with increasing heliocentric distance, because the tensile strength of the aggregates decreases with increasing aggregate size. The activity of CO ice in comparison to H_20 ice is capable to detach aggregates smaller by approximately one order of magnitude from the surface. As a result of the higher sublimation rate of CO ice, larger aggregates are additionally able to escape from the gravity field of the nucleus. Our model can explain the large grains (ranging from 2 cm to 1 m in radius) in the inner coma of comet 67P/Churyumov-Gerasimenko that have been observed by the OSIRIS camera at heliocentric distances between 3.4 AU and 3.7 AU. Furthermore, the model predicts the release of decimeter-sized aggregates (trail particles) close to the heliocentric distance at which the gas-driven dust activity vanishes. However, the gas-driven dust activity cannot explain the presence of particles smaller than ~1 mm in the coma because the high tensile strength required to detach these particles from the surface cannot be provided by evaporation of volatile ices. These smaller particles can be produced for instance by spin-up and centrifugal mass loss of ejected larger aggregates.
Dust jets, i.e. fuzzy collimated streams of cometary material arising from the nucleus, have been observed in-situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986. Yet their formation mechanism remains unknown. Several solutions have been proposed, from localized physical mechanisms on the surface/sub-surface (see review in Belton (2010)) to purely dynamical processes involving the focusing of gas flows by the local topography (Crifo et al. 2002). While the latter seems to be responsible for the larger features, high resolution imagery has shown that broad streams are composed of many smaller features (a few meters wide) that connect directly to the nucleus surface. We monitored these jets at high resolution and over several months to understand what are the physical processes driving their formation, and how this affects the surface. Using many images of the same areas with different viewing angles, we performed a 3-dimensional reconstruction of collimated jets, and linked them precisely to their sources on the nucleus. Results.We show here observational evidence that the Northern hemisphere jets of comet 67P arise from areas with sharp topographic changes and describe the physical processes involved. We propose a model in which active cliffs are the main source of jet-like features, and therefore the regions eroding the fastest on comets. We suggest that this is a common mechanism taking place on all comets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا