Do you want to publish a course? Click here

Skew-constacyclic codes over $frac{mathbb{F}_q[v]}{langle,v^q-v,rangle}$

248   0   0.0 ( 0 )
 Added by Joel Kabore
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, the investigation on the algebraic structure of the ring $frac{mathbb{F}_q[v]}{langle,v^q-v,rangle}$ and the description of its automorphism group, enable to study the algebraic structure of codes and their dual over this ring. We explore the algebraic structure of skew-constacyclic codes, by using a linear Gray map and we determine their generator polynomials. Necessary and sufficient conditions for the existence of self-dual skew cyclic and self-dual skew negacyclic codes over $frac{mathbb{F}_q[v]}{langle,v^q-v,rangle}$ are given.



rate research

Read More

In this paper we investigate linear codes with complementary dual (LCD) codes and formally self-dual codes over the ring $R=F_{q}+vF_{q}+v^{2}F_{q}$, where $v^{3}=v$, for $q$ odd. We give conditions on the existence of LCD codes and present construction of formally self-dual codes over $R$. Further, we give bounds on the minimum distance of LCD codes over $F_q$ and extend these to codes over $R$.
In this paper, we give conditions for the existence of Hermitian self-dual $Theta-$cyclic and $Theta-$negacyclic codes over the finite chain ring $mathbb{F}_q+umathbb{F}_q$. By defining a Gray map from $R=mathbb{F}_q+umathbb{F}_q$ to $mathbb{F}_{q}^{2}$, we prove that the Gray images of skew cyclic codes of odd length $n$ over $R$ with even characteristic are equivalent to skew quasi-twisted codes of length $2n$ over $mathbb{F}_q$ of index $2$. We also extend an algorithm of Boucher and Ulmer cite{BF3} to construct self-dual skew cyclic codes based on the least common left multiples of non-commutative polynomials over $mathbb{F}_q+umathbb{F}_q$.
100 - Zahid Raza , Amrina Rana 2015
Let $mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $mathcal{R}=mathbb{F}_p+umathbb{F}_p+u^2mathbb{F}_p+u^{3}mathbb{F}_{p}+cdots+u^{k}mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.
Let $mathbb{F}_{2^m}$ be a finite field of $2^m$ elements, and $R=mathbb{F}_{2^m}[u]/langle u^krangle=mathbb{F}_{2^m}+umathbb{F}_{2^m}+ldots+u^{k-1}mathbb{F}_{2^m}$ ($u^k=0$) where $k$ is an integer satisfying $kgeq 2$. For any odd positive integer $n$, an explicit representation for every self-dual cyclic code over $R$ of length $2n$ and a mass formula to count the number of these codes are given first. Then a generator matrix is provided for the self-dual and $2$-quasi-cyclic code of length $4n$ over $mathbb{F}_{2^m}$ derived by every self-dual cyclic code of length $2n$ over $mathbb{F}_{2^m}+umathbb{F}_{2^m}$ and a Gray map from $mathbb{F}_{2^m}+umathbb{F}_{2^m}$ onto $mathbb{F}_{2^m}^2$. Finally, the hull of each cyclic code with length $2n$ over $mathbb{F}_{2^m}+umathbb{F}_{2^m}$ is determined and all distinct self-orthogonal cyclic codes of length $2n$ over $mathbb{F}_{2^m}+umathbb{F}_{2^m}$ are listed.
In this note, we provide a description of the elements of minimum rank of a generalized Gabidulin code in terms of Grassmann coordinates. As a consequence, a characterization of linearized polynomials of rank at most $n-k$ is obtained, as well as parametric equations for MRD-codes of distance $d=n-k+1$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا