Do you want to publish a course? Click here

CP-violating Dark Photon Interaction

158   0   0.0 ( 0 )
 Added by Kaori Fuyuto
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a scenario for CP-violating (CPV) dark photon interactions in the context of non-abelian kinetic mixing. Assuming an effective field theory that extends the Standard Model (SM) field content with an additional $U(1)$ gauge boson ($X$) and a $SU(2)_L$ triplet scalar, we show that there exist both CP-conserving and CPV dimension five operators involving these new degrees of freedom and the SM $SU(2)_L$ gauge bosons. The former yields kinetic mixing between the $X$ and the neutral $SU(2)_L$ gauge boson (yielding the dark photon), while the latter induces CPV interactions of the dark photon with the SM particles. We discuss experimental probes of these interactions using searches for permanent electric dipole moments (EDMs) and di-jet correlations in high-energy $pp$ collisions. It is found that the experimental limit on the electron EDM currently gives the strongest restriction on the CPV interaction. In principle, high energy $pp$ collisions provide a complementary probe through azimuthal angular correlations of the two forward tagging jets in vector boson fusion. In practice, observation of the associated CPV asymmetry is likely to be challenging.

rate research

Read More

We study an extension of the Standard Model (SM) in which two copies of the SM scalar $SU(2)$ doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are textit{inert}, are added to the scalar sector. We allow for CP-violation in the textit{inert} sector, where the lightest textit{inert} state is protected from decaying to SM particles through the conservation of a $Z_2$ symmetry. The lightest neutral particle from the textit{inert} sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.
We introduce a simple scenario involving fermionic dark matter ($chi$) and singlet scalar mediators that may account for the Galactic Center GeV $gamma$-ray excess while satisfying present direct detection constraints. CP-violation in the scalar potential leads to mixing between the Standard Model Higgs boson and the scalar singlet, resulting in three scalars $h_{1,2,3}$ of indefinite CP-transformation properties. This mixing enables s-wave $chi{barchi}$ annihilation into di-scalar states, followed by decays into four fermion final states. The observed $gamma$-ray spectrum can be fitted while respecting present direct detection bounds and Higgs boson properties for $m_{chi} = 60 sim 80 $ GeV, and $m_{h_3} sim m_{chi}$. Searches for the Higgs exotic decay channel $h_1 to h_3 h_3$ at the 14 TeV LHC should be able to further probe the parameter region favored by the $gamma$-ray excess.
We analyse CP-violating effects in Z -> 4 jet decays, assuming the presence of a CP-violating effective triple gluon coupling. We discuss the influence of this coupling on the decay width. Furthermore, we analyse different CP-odd observables and propose strategies of a direct search for such a CP-violating GGG coupling. The present data of LEP 1 should give significant information on the coupling.
218 - Luca Di Luzio 2021
While the axion was originally introduced to wash out CP violation from strong interactions, new sources of CP violation beyond QCD might manifest themselves via a tiny scalar axion-nucleon component. The latter can be experimentally probed in axion-mediated force experiments, as suggested long ago by J.E. Moody and F. Wilczek. In the present note, I review the physical origin of CP-violating axion couplings and point out the special role of the QCD axion as a low-energy portal to high-energy sources of CP violation.
We investigate the sensitivity of the next generation of flavor-based low-energy experiments to probe the supersymmetric parameter space in the context of the phenomenological MSSM (pMSSM), and examine the complementarity with direct searches for Supersymmetry at the 13 TeV LHC in a quantitative manner. To this end, we enlarge the previously studied pMSSM parameter space to include all physical non-zero CP-violating phases, namely those associated with the gaugino mass parameters, Higgsino mass parameter, and the tri-linear couplings of the top quark, bottom quark and tau lepton. We find that future electric dipole moment and flavor measurements can have a strong impact on the viability of these models even if the sparticle spectrum is out of reach of the 13 TeV LHC. In particular, the lack of positive signals in future low-energy probes would exclude values of the phases between ${cal O}(10^{-2})$ and ${cal O}(10^{-1})$. We also find regions of parameter space where large phases remain allowed due to cancellations. Most interestingly, in some rare processes, such as BR($B_s to mu^+ mu^-$ ), we find that contributions arising from CP-violating phases can bring the potentially large SUSY contributions into better agreement with experiment and Standard Model predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا