Understanding Agent Incentives using Causal Influence Diagrams. Part I: Single Action Settings


Abstract in English

Agents are systems that optimize an objective function in an environment. Together, the goal and the environment induce secondary objectives, incentives. Modeling the agent-environment interaction using causal influence diagrams, we can answer two fundamental questions about an agents incentives directly from the graph: (1) which nodes can the agent have an incentivize to observe, and (2) which nodes can the agent have an incentivize to control? The answers tell us which information and influence points need extra protection. For example, we may want a classifier for job applications to not use the ethnicity of the candidate, and a reinforcement learning agent not to take direct control of its reward mechanism. Different algorithms and training paradigms can lead to different causal influence diagrams, so our method can be used to identify algorithms with problematic incentives and help in designing algorithms with better incentives.

Download