D-sets in Arbitrary Semigroup


Abstract in English

We define the notion of $D$-set in an arbitrary semigroup, and with some mild restrictions we establish its dynamical and combinatorial characterizations. Assuming a weak form of cancellation in semigroups we have shown that the Cartesian product of finitely many $D$-sets is a $D$-set. A similar partial result has been proved for Cartesian product of infinitely many $D$-sets. Finally, in a commutative semigroup we deduce that $D$-sets (with respect to a F{o}lner net) are $C$-sets.

Download