Do you want to publish a course? Click here

SDSS-IV eBOSS Spectroscopy of X-ray and WISE AGN in Stripe 82X: Overview of the Demographics of X-ray and Mid-Infrared Selected Active Galactic Nuclei

83   0   0.0 ( 0 )
 Added by Stephanie LaMassa
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of a Sloan Digital Sky Survey-IV eBOSS program to target X-ray sources and mid-infrared-selected WISE AGN candidates in a 36.8 deg$^2$ region of Stripe 82. About half this survey (15.6 deg$^2$) covers the largest contiguous portion of the Stripe 82 X-ray survey. This program represents the largest spectroscopic survey of AGN candidates selected solely by their WISE colors. We combine this sample with X-ray and WISE AGN in the field identified via other sources of spectroscopy, producing a catalog of 4847 sources that is 82% complete to $rsim22$. Based on X-ray luminosities or WISE colors, 4730 of these sources are AGN, with a median sample redshift of $zsim1$. About 30% of the AGN are optically obscured (i.e., lack broad lines in their optical spectra). BPT analysis, however, indicates that 50% of the WISE AGN at $z<0.5$ have emission line ratios consistent with star-forming galaxies, so whether they are buried AGN or star-forming galaxy contaminants is currently unclear. We find that 61% of X-ray AGN are not selected as MIR AGN, with 22% of X-ray AGN undetected by WISE. Most of these latter AGN have high X-ray luminosities ($L_{rm x} > 10^{44}$ erg s$^{-1}$), indicating that MIR selection misses a sizable fraction of the highest luminosity AGN, as well as lower luminosity sources where AGN heated dust is not dominating the MIR emission. Conversely, $sim$58% of WISE AGN are undetected by X-rays, though we do not find that they are preferentially redder than the X-ray detected WISE AGN.



rate research

Read More

202 - Sagnick Mukherjee 2018
We use data from the All Wavelength Extended Groth Strip International Survey to construct stacked X-ray maps of optically bright active galaxies (AGN) and an associated control sample of galaxies at high redshift (z less than 0.6). From our analysis of the surface brightness profiles obtained from these X-ray maps, we find evidence of feedback from the active nuclei. We find that excluding galaxies and AGN, residing in group environments, from our samples enhances the significance of our detection. Our results support the tentative findings of Chatterjee et al. who use X-ray selected AGN for their analysis. We discuss the implications of these results in the context of quantifying AGN feedback and show that the current method can be used to extract X-ray source population in high redshift galaxies.
We investigate the optical morphologies of candidate active galaxies identified at radio, X-ray, and mid-infrared wavelengths. We use the Advanced Camera for Surveys General Catalog (ACS-GC) to identify 372, 1360, and 1238 AGN host galaxies from the VLA, XMM-Newton and Spitzer Space Telescope observations of the COSMOS field, respectively. We investigate both quantitative (GALFIT) and qualitative (visual) morphologies of these AGN host galaxies, split by brightness in their selection band. We find that the radio-selected AGN are most distinct, with a very low incidence of having unresolved optical morphologies and a high incidence of being hosted by early-type galaxies. In comparison to X-ray selected AGN, mid-IR selected AGN have a slightly higher incidence of being hosted by disk galaxies. These morphological results conform with the results of Hickox et al. 2009 who studied the colors and large-scale clustering of AGN, and found a general association of radio-selected AGN with ``red sequence galaxies, mid-IR selected AGN with ``blue cloud galaxies, and X-ray selected AGN straddling these samples in the ``green valley. In the general scenario where AGN activity marks and regulates the transition from late-type disk galaxies into massive elliptical galaxies, this work suggests that the earlier stages are most evident as mid-IR selected AGNs. Mid-IR emission is less susceptible to absorption than the relatively soft X-rays probed by XMM-Newton, which are seen at later stages in the transition. Radio-selected AGN are then typically associated with minor bursts of activity in the most massive galaxies.
Nearby active galactic nuclei were diagnosed in the X-ray and mid-to-far infrared wavelengths, with Monitor of All-sky X-ray Image (MAXI) and the Japanese infrared observatory AKARI, respectively. Among the X-ray sources listed in the second release of the MAXI all-sky X-ray source catalog, 100 ones are currently identified as a non-blazar-type active galactic nucleus. These include 95 Seyfert galaxies and 5 quasars, and they are composed of 73 type-1 and 27 type-2 objects. The AKARI all-sky survey point source catalog was searched for their mid- and far-infrared counterparts at 9, 18, and 90 $mu$m. As a result, 69 Seyfert galaxies in the MAXI catalog (48 type-1 and 21 type-2 ones) were found to be detected with AKARI. The X-ray (3-4 keV and 4-10 keV) and infrared luminosities of these objects were investigated, together with their color information. Adopting the canonical photon index, $Gamma = 1.9$, of the intrinsic X-ray spectrum of the Seyfert galaxies, the X-ray hardness ratio between the 3-4 and 4-10 keV ranges derived with MAXI was roughly converted into the absorption column density. After the X-ray luminosity was corrected for absorption from the estimated column density, the well-known X-ray-to-infrared luminosity correlation was confirmed at least in the Compton-thin regime. In contrast, NGC 1365, only one Compton-thick object in the MAXI catalog, was found to deviate from the correlation toward a significantly lower X-ray luminosity by nearly an order of magnitude. It was verified that the relation between the X-ray hardness below 10 keV and X-ray-to-infrared color acts as an effective tool to pick up Compton-thick objects. The difference in the infrared colors between the type-1 and type-2 Seyfert galaxies and its physical implication on the classification and unification of active galactic nuclei were briefly discussed.
Using the latest 70 month Swift-BAT catalog we examined hard X-ray selected Seyfert I galaxies which are relatively little known and little studied, and yet potentially promising to test the ionized relativistic reflection model. From this list we chose 13 sources which have been observed by XMM-Newton for less than 20 ks, in order to explore the broad band soft to hard X-ray properties with the analysis of combined XMM-Newton and Swift data. Out of these we found seven sources which exhibit potentially promising features of the relativistic disc reflection, such as a strong soft excess, a large Compton hump and/or a broadened Fe line. Longer observations of four of these sources with the currently operating satellite missions, such as Suzaku, XMM-Newton and NuStar and two others by such future missions as ASTRO-H, will be invaluable, in order to better understand the relativistic disc reflection closest to the central black hole and constrain such important effects of strong gravity as the black hole spin.
An empirical forward-modeling framework is developed to interpret the multiwavelength properties of Active Galactic Nuclei (AGN) and provide insights into the overlap and incompleteness of samples selected at different parts of the electromagnetic spectrum. The core of the model are observationally derived probabilites on the occupation of galaxies by X-ray selected AGN. These are used to seed mock galaxies drawn from stellar-mass functions with accretion events and then associate them with spectral energy distributions that describe both the stellar and AGN emission components. This approach is used to study the complementarity between X-ray and WISE mid-infrared AGN selection methods. We first show that the basic observational properties of the X-ray and WISE AGN (magnitude, redshift distributions) are adequately reproduced by the model. We then infer the level of contamination of the WISE selection and show that this is dominated by non-AGN at redshifts z < 0.5. These are star-forming galaxies that scatter into the WISE AGN selection wedge because of photometric uncertainties affecting their colours. Our baseline model shows a sharp drop in the number density of heavily obscured AGN above the Compton thick limit in the WISE bands. The model also overpredicts by a factor of 1.5 the fraction of X-ray associations in the WISE AGN selection box compared to observations. This suggests a population of X-ray faint sources that is not reproduced by the model. This discrepancy is discussed in the context of either heavily obscured or intrinsically X-ray weak AGN. Evidence is found in favour of the latter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا