Spectroscopic study on hot-electron transport in a quantum Hall edge channel


Abstract in English

Hot electron transport in a quantum Hall edge channel of an AlGaAs/GaAs heterostructure is studied by investigating the energy distribution function in the channel. Ballistic hot-electron transport, its optical-phonon replicas, weak electron-electron scattering, and electron-hole excitation in the Fermi sea are clearly identified in the energy spectra. The optical-phonon scattering is analyzed to evaluate the edge potential profile. We find that the electron-electron scattering is significantly suppressed with increasing the hot-electrons energy well above the Fermi energy. This can be understood with suppressed Coulomb potential with longer distance for higher energy. The results suggest that the relaxation can be suppressed further by softening the edge potential. This is essential for studying non-interacting chiral transport over a long distance.

Download