Do you want to publish a course? Click here

Asymmetric mid-plane gas in ALMA images of HD~100546

107   0   0.0 ( 0 )
 Added by James Miley
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present new ALMA observations towards the proto-planet hosting transitional disc of Herbig Ae/Be star HD 100546. This includes resolved 1.3 mm continuum, $^{13}$CO and the first detection of C$^{18}$O in this disc, which displays azimuthal asymmetry in regions spatially coincident with structures previously identified in HST images related to spiral arms. The lower limit on the mass of the dust disc is calculated to be 9.6x10$^{-4}$M$_odot$. A firm lower-limit on the total gas mass calculated from optically thin, mid-plane tracing C$^{18}$O (2-1) emission is 0.018M$_odot$ assuming ISM abundances. These mass estimates provide an estimate of gas-to-dust ratio in the disc of 19, the ratio will increase if C$^{18}$O is relatively under-abundant in the disc compared to CO and H2. Through deprojection and azimuthal averaging of the image plane we detect 1.3 mm continuum emission out to 290+/-10 au,$^{13}$CO to 390+/-10 au and C$^{18}$O to 300+/-10au. We measure a radially increasing millimetre spectral index between wavelengths of 867$mu$m and 1.3 mm, which shows that grain sizes increase towards the star, with solid particles growing to cm scales in the inner disc.



rate research

Read More

144 - Jaime E. Pineda 2014
The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimeter dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of $approx$50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.
Young accreting stars drive outflows that collimate into jets, which can be seen hundreds of au from their driving sources. Accretion and outflow activity cease with system age, and it is believed that magneto-centrifugally launched disk winds are critical agents in regulating accretion through the protoplanetary disk. Protostellar jets are well studied in classical T~Tauri stars ($M_starlesssim2,M_odot$), while few nearby ($dlesssim150,$pc) intermediate-mass stars ($M_star=2-10,M_odot$), known as Herbig Ae/Be stars, have detected jets. We report VLT/MUSE observations of the Herbig~Ae/Be star HD~100546 and the discovery of a protostellar jet. The jet is similar in appearance to jets driven by low-mass stars and compares well with the jet of HD~163296, the only other known optical jet from a nearby Herbig~Ae/Be star. We derive a (one-sided) mass-loss rate in the jet of $log dot{M}_{jet} sim -9.5$ (in $M_odot$,yr$^{-1}$) and a ratio of outflow to accretion of roughly $3times10^{-3}$, which is lower than that of CTTS jets. The discovery of the HD~100546 jet is particularly interesting because the protoplanetary disk around HD~100546 shows a large radial gap, spiral structure, and might host a protoplanetary system. A bar-like structure previously seen in H$alpha$ with VLT/SPHERE shares the jet position angle, likely represents the base of the jet, and suggests a jet-launching region within about 2,au. We conclude that the evolution of the disk at radii beyond a few au does not affect the ability of the system to launch jets.
207 - Catherine Walsh 2014
HD 100546 is a well-studied Herbig Be star-disk system that likely hosts a close-in companion with compelling observational evidence for an embedded protoplanet at 68 AU. We present ALMA observations of the HD 100546 disk which resolve the gas and dust structure at (sub)mm wavelengths. The CO emission (at 345.795 GHz) originates from an extensive molecular disk (390+/-20 AU in radius) whereas the continuum emission is more compact (230+/-20 AU in radius) suggesting radial drift of the mm-sized grains. The CO emission is similar in extent to scattered light images indicating well-mixed gas and um-sized grains in the disk atmosphere. Assuming azimuthal symmetry, a single-component power-law model cannot reproduce the continuum visibilities. The visibilities and images are better reproduced by a double-component model: a compact ring with a width of 21 AU centered at 26 AU and an outer ring with a width of 75+/-3 AU centered at 190+/-3 AU. The influence of a companion and protoplanet on the dust evolution is investigated. The companion at 10 AU facilitates the accumulation of mm-sized grains within a compact ring, ~ 20 - 30 AU, by ~ 10 Myr. The injection of a protoplanet at 1 Myr hastens the ring formation (~ 1.2 Myr) and also triggers the development of an outer ring (~ 100 - 200 AU). These observations provide additional evidence for the presence of a close-in companion and hint at dynamical clearing by a protoplanet in the outer disk.
The disc around the Herbig Ae/Be star HD 100546 is one of the most extensively studied discs in the southern sky. Although there is a wealth of information about its dust content and composition, not much is known about its gas and large scale kinematics. We detect and study the molecular gas in the disc at spatial resolution from 7.7 to 18.9 using the APEX telescope. The lines 12CO J=7-6, J=6-5, J=3-2, 13CO J=3-2 and [C I] 3P2-3P1 are observed, diagnostic of disc temperature, size, chemistry, and kinematics. We use parametric disc models that reproduce the low-J 12CO emission from Herbig~Ae stars and vary the basic disc parameters - temperature, mass and size. Using the molecular excitation and radiative transfer code RATRAN we fit the observed spectral line profiles. Our observations are consistent with more than 0.001 Msun of molecular gas in a disc of approximately 400 AU radius in Keplerian rotation around a 2.5 Msun star, seen at an inclination of 50 degrees. The detected 12CO lines are dominated by gas at 30-70~K. The non-detection of the [C I] line indicates excess ultraviolet emission above that of a B9 type model stellar atmosphere. Asymmetry in the 12CO line emission suggests that one side of the outer disc is colder by 10-20~K than the other, possibly due to a shadow by a warped geometry of the inner disc. Pointing offsets, foreground cloud absorption and asymmetry in the disc extent are excluded scenarios. Efficient heating of the outer disc ensures that low- and high-J 12CO lines are dominated by the outermost disc regions, indicating a 400 AU radius. The 12CO J=6--5 line arises from a disc layer higher above disc midplane, and warmer by 15-20~K than the layer emitting the J=3--2 line. The existing models of discs around Herbig Ae stars, assuming a B9.5 type model stellar atmosphere overproduce the [CI] 3P2--3P1 line intensity from HD 100546 by an order of magnitude.
We present observations of ro-vibrational OH and CO emission from the Herbig Be star HD 100546. The emission from both molecules arises from the inner region of the disk extending from approximately 13 AU from the central star. The velocity profiles of the OH lines are narrower than the velocity profile of the [O I] 6300 Angstrom line indicating that the OH in the disk is not cospatial with the O I. This suggests that the inner optically thin region of the disk is largely devoid of molecular gas. Unlike the ro-vibrational CO emission lines, the OH lines are highly asymmetric. We show that the average CO and average OH line profiles can be fit with a model of a disk comprised of an eccentric inner wall and a circular outer disk. In this model, the vast majority of the OH flux (75%) originates from the inner wall, while the vast majority of the CO flux (65%) originates on the surface of the disk at radii greater than 13 AU. Eccentric inner disks are predicted by hydrodynamic simulations of circumstellar disks containing an embedded giant planet. We discuss the implications of such a disk geometry in light of models of planet disk tidal interactions and propose alternate explanations for the origin of the asymmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا