Do you want to publish a course? Click here

Interacting Majorana fermions in strained nodal superconductors

162   0   0.0 ( 0 )
 Added by Emilian M. Nica
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Landau levels (LL) have been predicted to emerge in systems with Dirac nodal points under applied non-uniform strain. We consider 2D, $d_{xy}$ singlet (2D-S) and 3D $p pm i p$ equal-spin triplet (3D-T) superconductors (SCs). We demonstrate the spinful Majorana nature of the bulk gapless zeroth-LLs. Strain along certain directions can induce two topologically distinct phases in the bulk, with zeroth LLs localized at the the interface. These modes are unstable toward ferromagnetism for 2D-S cases. Emergent real-space Majorana fermions in 3D-T allow for more exotic possibilities.



rate research

Read More

Majorana fermions are rising as a promising key component in quantum computation. While the prevalent approach is to use a quadratic (i.e. non-interacting) Majorana Hamiltonian, when expressed in terms of Dirac fermions, generically the Hamiltonian involves interaction terms. Here we focus on the possible pair correlations in a simple model system. We study a model of Majorana fermions coupled to a boson mode and show that the anomalous correlator between different Majorana fermions, located at opposite ends of a topological wire, exhibits odd frequency behavior. It is stabilized when the coupling strength $g$ is above a critical value $g_c$. We use both, conventional diagrammatic theory and a functional integral approach, to derive the gap equation, the critical temperature, the gap function, the critical coupling, and a Ginzburg-Landau theory allowing to discuss a possible subleading admixture of even-frequency pairing.
321 - E. Berg , C-C. Chen , 2008
We establish a condition for the perturbative stability of zero energy nodal points in the quasi-particle spectrum of superconductors in the presence of coexisting textit{commensurate} orders. The nodes are found to be stable if the Hamiltonian is invariant under time reversal followed by a lattice translation. The principle is demonstrated with a few examples. Some experimental implications of various types of assumed order are discussed in the context of the cuprate superconductors.
Motivated by the recent achievements in the realization of strongly correlated and topological phases in twisted van der Waals heterostructures, we study the low-energy properties of a twisted bilayer of nodal superconductors. It is demonstrated that the spectrum of the superconducting Dirac quasiparticles close to the gap nodes is strongly renormalized by twisting and can be controlled with magnetic fields, current, or interlayer voltage. In particular, the application of an interlayer current transforms the system into a topological superconductor, opening a topological gap and resulting in a quantized thermal Hall effect with gapless, neutral edge modes. Close to the magic angle, where the Dirac velocity of the quasiparticles is found to vanish, a correlated superconducting state breaking time-reversal symmetry is shown to emerge. Estimates for a number of superconducting materials, such as cuprate, heavy fermion, and organic nodal superconductors, show that twisted bilayers of nodal superconductors can be readily realized with current experimental techniques.
We investigate the properties of the coexistence phase of itinerant antiferromagnetism and nodal $d$-wave superconductivity (Q-phase) discovered in heavy fermion CeCoIn5 under applied magnetic field. We solve the minimal model that includes $d$-wave superconductivity and underlying magnetic correlations in real space to elucidate the structure of the $Q$-phase in the presence of an externally applied magnetic field. We further focus on the role of magnetic impurities, and show that they nucleate the Q-phase at lower magnetic fields. Our most crucial finding is that, even at zero applied field, dilute magnetic impurities cooperate via RKKY-like exchange interactions to generate a long-range ordered coexistence state identical to the Q-phase. This result is in agreement with recent neutron scattering measurements [S. Raymond et al., J. Phys. Soc. Jpn. {bf 83}, 013707 (2014)].
We study multiband semiconducting nanowires proximity-coupled with an s-wave superconductor and calculate the topological phase diagram as a function of the chemical potential and magnetic field. The non-trivial topological state corresponds to a superconducting phase supporting an odd number of pairs of Majorana modes localized at the ends of the wire, whereas the non-topological state corresponds to a superconducting phase with no Majoranas or with an even number of pairs of Majorana modes. Our key finding is that multiband occupancy not only lifts the stringent constraint of one-dimensionality, but also allows having higher carrier density in the nanowire. Consequently, multiband nanowires are better-suited for stabilizing the topological superconducting phase and for observing the Majorana physics. We present a detailed study of the parameter space for multiband semiconductor nanowires focusing on understanding the key experimental conditions required for the realization and detection of Majorana fermions in solid-state systems. We include various sources of disorder and characterize their effects on the stability of the topological phase. Finally, we calculate the local density of states as well as the differential tunneling conductance as functions of external parameters and predict the experimental signatures that would establish the existence of emergent Majorana zero-energy modes in solid-state systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا