Do you want to publish a course? Click here

STCN: Stochastic Temporal Convolutional Networks

85   0   0.0 ( 0 )
 Added by Emre Aksan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Convolutional architectures have recently been shown to be competitive on many sequence modelling tasks when compared to the de-facto standard of recurrent neural networks (RNNs), while providing computational and modeling advantages due to inherent parallelism. However, currently there remains a performance gap to more expressive stochastic RNN variants, especially those with several layers of dependent random variables. In this work, we propose stochastic temporal convolutional networks (STCNs), a novel architecture that combines the computational advantages of temporal convolutional networks (TCN) with the representational power and robustness of stochastic latent spaces. In particular, we propose a hierarchy of stochastic latent variables that captures temporal dependencies at different time-scales. The architecture is modular and flexible due to the decoupling of the deterministic and stochastic layers. We show that the proposed architecture achieves state of the art log-likelihoods across several tasks. Finally, the model is capable of predicting high-quality synthetic samples over a long-range temporal horizon in modeling of handwritten text.



rate research

Read More

Graph convolutional neural networks (GCNs) embed nodes in a graph into Euclidean space, which has been shown to incur a large distortion when embedding real-world graphs with scale-free or hierarchical structure. Hyperbolic geometry offers an exciting alternative, as it enables embeddings with much smaller distortion. However, extending GCNs to hyperbolic geometry presents several unique challenges because it is not clear how to define neural network operations, such as feature transformation and aggregation, in hyperbolic space. Furthermore, since input features are often Euclidean, it is unclear how to transform the features into hyperbolic embeddings with the right amount of curvature. Here we propose Hyperbolic Graph Convolutional Neural Network (HGCN), the first inductive hyperbolic GCN that leverages both the expressiveness of GCNs and hyperbolic geometry to learn inductive node representations for hierarchical and scale-free graphs. We derive GCN operations in the hyperboloid model of hyperbolic space and map Euclidean input features to embeddings in hyperbolic spaces with different trainable curvature at each layer. Experiments demonstrate that HGCN learns embeddings that preserve hierarchical structure, and leads to improved performance when compared to Euclidean analogs, even with very low dimensional embeddings: compared to state-of-the-art GCNs, HGCN achieves an error reduction of up to 63.1% in ROC AUC for link prediction and of up to 47.5% in F1 score for node classification, also improving state-of-the art on the Pubmed dataset.
Graph convolutional neural networks (GCNNs) are nonlinear processing tools to learn representations from network data. A key property of GCNNs is their stability to graph perturbations. Current analysis considers deterministic perturbations but fails to provide relevant insights when topological changes are random. This paper investigates the stability of GCNNs to stochastic graph perturbations induced by link losses. In particular, it proves the expected output difference between the GCNN over random perturbed graphs and the GCNN over the nominal graph is upper bounded by a factor that is linear in the link loss probability. We perform the stability analysis in the graph spectral domain such that the result holds uniformly for any graph. This result also shows the role of the nonlinearity and the architecture width and depth, and allows identifying handle to improve the GCNN robustness. Numerical simulations on source localization and robot swarm control corroborate our theoretical findings.
Lipschitz constraints under L2 norm on deep neural networks are useful for provable adversarial robustness bounds, stable training, and Wasserstein distance estimation. While heuristic approaches such as the gradient penalty have seen much practical success, it is challenging to achieve similar practical performance while provably enforcing a Lipschitz constraint. In principle, one can design Lipschitz constrained architectures using the composition property of Lipschitz functions, but Anil et al. recently identified a key obstacle to this approach: gradient norm attenuation. They showed how to circumvent this problem in the case of fully connected networks by designing each layer to be gradient norm preserving. We extend their approach to train scalable, expressive, provably Lipschitz convolutional networks. In particular, we present the Block Convolution Orthogonal Parameterization (BCOP), an expressive parameterization of orthogonal convolution operations. We show that even though the space of orthogonal convolutions is disconnected, the largest connected component of BCOP with 2n channels can represent arbitrary BCOP convolutions over n channels. Our BCOP parameterization allows us to train large convolutional networks with provable Lipschitz bounds. Empirically, we find that it is competitive with existing approaches to provable adversarial robustness and Wasserstein distance estimation.
84 - Yimeng Min 2020
Graph convolutional networks (GCNs) have shown promising results in processing graph data by extracting structure-aware features. This gave rise to extensive work in geometric deep learning, focusing on designing network architectures that ensure neuron activations conform to regularity patterns within the input graph. However, in most cases the graph structure is only accounted for by considering the similarity of activations between adjacent nodes, which limits the capabilities of such methods to discriminate between nodes in a graph. Here, we propose to augment conventional GCNs with geometric scattering transforms and residual convolutions. The former enables band-pass filtering of graph signals, thus alleviating the so-called oversmoothing often encountered in GCNs, while the latter is introduced to clear the resulting features of high-frequency noise. We establish the advantages of the presented Scattering GCN with both theoretical results establishing the complementary benefits of scattering and GCN features, as well as experimental results showing the benefits of our method compared to leading graph neural networks for semi-supervised node classification, including the recently proposed GAT network that typically alleviates oversmoothing using graph attention mechanisms.
Graph convolution operator of the GCN model is originally motivated from a localized first-order approximation of spectral graph convolutions. This work stands on a different view; establishing a textit{mathematical connection between graph convolution and graph-regularized PCA} (GPCA). Based on this connection, GCN architecture, shaped by stacking graph convolution layers, shares a close relationship with stacking GPCA. We empirically demonstrate that the textit{unsupervised} embeddings by GPCA paired with a 1- or 2-layer MLP achieves similar or even better performance than GCN on semi-supervised node classification tasks across five datasets including Open Graph Benchmark footnote{url{https://ogb.stanford.edu/}}. This suggests that the prowess of GCN is driven by graph based regularization. In addition, we extend GPCA to the (semi-)supervised setting and show that it is equivalent to GPCA on a graph extended with ghost edges between nodes of the same label. Finally, we capitalize on the discovered relationship to design an effective initialization strategy based on stacking GPCA, enabling GCN to converge faster and achieve robust performance at large number of layers. Notably, the proposed initialization is general-purpose and applies to other GNNs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا