Do you want to publish a course? Click here

Electron-phonon coupling in a honeycomb borophene grown on Al(111) surface

142   0   0.0 ( 0 )
 Added by Miao Gao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, a honeycomb borophene was reported to grow successfully on Al(111) surface. Since the metallic $sigma$-bonding bands of honeycomb boron sheet play a crucial role in the 39 K superconductivity of MgB$_2$, it is physically interesting to examine whether similar property exists in this material. We have calculated the electronic structures and the electron-phonon coupling for honeycomb borophene by explicitly considering the substrate effect using first-principles density functional theory in conjunction with the Wannier interpolation technique. We find that the $sp^2$-hybridized $sigma$-bonding bands of honeycomb borophene are metallized due to moderate charge transfer from the Al substrate, similar as in MgB$_2$. However, the electron-phonon coupling in honeycomb borophene is much weaker than in MgB$_2$ due to the hardening of the bond-stretching boron phonon modes and the reduction of phonon density of states. Nevertheless, the interlayer coupling between Al-associated phonons and electrons in borophene is strong. Based on this observation, we predict that a 6.5 K superconducting transition can be observed in a free-standing borophene decorated by a single Al layer, namely monolayer AlB$_2$. Accordingly, similar superconducting transition temperature could be expected in honeycomb borophene on Al(111).



rate research

Read More

We present a combined experimental and theoretical study of the surface vibrational modes of the topological insulator (TI) Bi$_2$Se$_3$ with particular emphasis on the low-energy region below 10 meV that has been difficult to resolve experimentally. By applying inelastic helium atom scattering (HAS), the entire phonon dispersion was determined and compared with density functional perturbation theory (DFPT) calculations. The intensity of the phonon modes is dominated by a strong Rayleigh mode, in contrast to previous experimental works. Moreover, also at variance with recent reports, no Kohn-anomaly is observed. These observations are in excellent agreement with DFPT calculations. Besides these results, the experimental data reveal$-$via bound-state resonance enhancement$-$two additional dispersion curves in the gap below the Rayleigh mode. They are possibly associated with an excitation of a surface electron density superstructure that we observe in HAS diffraction patterns. The electron-phonon coupling paramenter $lambda$ = 0.23 derived from our temperature dependent Debye-Waller measurements compares well with values determined by angular resolved photoemission or Landau level spectroscopy. Our work opens up a new perspective for THz measurements on 2D materials as well as the investigation of subtle details (band bending, the presence of quantum well states) with respect to the electron-phonon coupling.
We combine electron beam lithography and masked anodization of epitaxial aluminium to define tunnel junctions via selective oxidation, alleviating the need for wet-etch processing or direct deposition of dielectric materials. Applying this technique to define Josephson junctions in proximity induced superconducting Al-InAs heterostructures, we observe multiple Andreev reflections in transport experiments, indicative of a high quality junction. We further compare the mobility and density of Hall-bars defined via wet etching and anodization. These results may find utility in uncovering new fabrication approaches to junction-based qubit platforms.
We present high-resolution angle-resolved photoemission spectroscopy study in conjunction with first principles calculations to investigate how the interaction of electrons with phonons in graphene is modified by the presence of Yb. We find that the transferred charges from Yb to the graphene layer hybridize with the graphene $pi$ bands, leading to a strong enhancement of the electron-phonon interaction. Specifically, the electron-phonon coupling constant is increased by as much as a factor of 10 upon the introduction of Yb with respect to as grown graphene ($leq$0.05). The observed coupling constant constitutes the highest value ever measured for graphene and suggests that the hybridization between graphene and the adatoms might be a critical parameter in realizing superconducting graphene.
Motivated by the observation of two distinct superconducting phases in the moireless ABC-stacked rhombohedral trilayer graphene, we investigate the electron-acoustic-phonon coupling as a possible pairing mechanism. We predict the existence of superconductivity with the highest $T_csim 3$K near the Van Hove singularity. Away from the Van Hove singularity, $T_c$ remains finite in a wide range of doping. In our model, the $s$-wave spin-singlet and $f$-wave spin-triplet pairings yield the same $T_c$, while other pairing states have negligible $T_c$. Our theory provides a simple explanation for the two distinct superconducting phases in the experiment and suggests that superconductivity and other interaction-driven phases (e.g., ferromagnetism) can have different origins.
We perform single- and multi-band Migdal-Eliashberg (ME) calculations with parameters exctracted from density functional theory (DFT) simulations to study superconductivity in the electric-field-induced 2-dimensional hole gas at the hydrogenated (111) diamond surface. We show that according to the Eliashberg theory it is possible to induce a high-T$_{text{c}}$ superconducting phase when the system is field-effect doped to a surface hole concentration of $6times10^{14},$cm$^{-2}$, where the Fermi level crosses three valence bands. Starting from the band-resolved electron-phonon spectral functions $alpha^2F_{jj}(omega)$ computed ab initio, we iteratively solve the self-consistent isotropic Migdal-Eliashberg equations, in both the single-band and the multi-band formulations, in the approximation of a constant density of states at the Fermi level. In the single-band formulation, we find T$_{text{c}}approx40,$K, which is enhanced between $4%$ and $8%$ when the multi-band nature of the system is taken into account. We also compute the multi-band-sensistive quasiparticle density of states to act as a guideline for future experimental works.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا