Do you want to publish a course? Click here

Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review

60   0   0.0 ( 0 )
 Added by Christian Bick
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many biological and neural systems can be seen as networks of interacting periodic processes. Importantly, their functionality depends on the emerging collective dynamics of the network. Synchrony of oscillations is one of the most prominent examples of such collective behavior and has been associated both with function and dysfunction. Understanding how network structure and interactions, as well as the microscopic properties of individual units, shape the emerging collective dynamics is critical to find factors that lead to malfunction. However, many biological systems such as the brain consist of a large number of dynamical units. Hence, their analysis has either relied on simplified heuristic models on a coarse scale, or the analysis comes at a huge computational cost. Here we review recently introduced approaches, known as the Ott-Antonsen and Watanabe-Strogatz reductions, allowing one to simplify the analysis by bridging small and large scales. Thus, reduced model equations are obtained that exactly describe the collective dynamics for each subpopulation in the oscillator network via few collective variables only. The resulting equations are next-generation models: Rather than being heuristic, they exactly link microscopic and macroscopic descriptions and therefore accurately capture microscopic properties of the underlying system. At the same time, they are sufficiently simple to analyze without great computational effort. In the last decade, these reduction methods have become instrumental in understanding how network structure and interactions shape the collective dynamics and the emergence of synchrony. We review this progress based on concrete examples and outline possible limitations. Finally, we discuss how linking the reduced models with experimental data can guide the way towards the development of new treatment approaches, for example, for neurological disease.



rate research

Read More

When the interactions of agents on a network are assumed to follow the Deffuant opinion dynamics model, the outcomes are known to depend on the structure of the underlying network. This behavior cannot be captured by existing mean-field approximations for the Deffuant model. In this paper, a generalised mean-field approximation is derived that accounts for the effects of network topology on Deffuant dynamics through the degree distribution or community structure of the network. The accuracy of the approximation is examined by comparison with large-scale Monte Carlo simulations on both synthetic and real-world networks.
Synchronization is an important behavior that characterizes many natural and human made systems composed by several interacting units. It can be found in a broad spectrum of applications, ranging from neuroscience to power-grids, to mention a few. Such systems synchronize because of the complex set of coupling they exhibit, the latter being modeled by complex networks. The dynamical behavior of the system and the topology of the underlying network are strongly intertwined, raising the question of the optimal architecture that makes synchronization robust. The Master Stability Function (MSF) has been proposed and extensively studied as a generic framework to tackle synchronization problems. Using this method, it has been shown that for a class of models, synchronization in strongly directed networks is robust to external perturbations. In this paper, our approach is to transform the non-autonomous system of coupled oscillators into an autonomous one, showing that previous results are model-independent. Recent findings indicate that many real-world networks are strongly directed, being potential candidates for optimal synchronization. Inspired by the fact that highly directed networks are also strongly non-normal, in this work, we address the matter of non-normality by pointing out that standard techniques, such as the MSF, may fail in predicting the stability of synchronized behavior. These results lead to a trade-off between non-normality and directedness that should be properly considered when designing an optimal network, enhancing the robustness of synchronization.
The behavior at bifurcation from global synchronization to partial synchronization in finite networks of coupled oscillators is a complex phenomenon, involving the intricate dynamics of one or more oscillators with the remaining synchronized oscillators. This is not captured well by standard macroscopic model reduction techniques which capture only the collective behavior of synchronized oscillators in the thermodynamic limit. We introduce two mesoscopic model reductions for finite sparse networks of coupled oscillators to quantitatively capture the dynamics close to bifurcation from global to partial synchronization. Our model reduction builds upon the method of collective coordinates. We first show that standard collective coordinate reduction has difficulties capturing this bifurcation. We identify a particular topological structure at bifurcation consisting of a main synchronized cluster, the oscillator that desynchronizes at bifurcation, and an intermediary node connecting them. Utilizing this structure and ensemble averages we derive an analytic expression for the mismatch between the true bifurcation from global to partial synchronization and its estimate calculated via the collective coordinate approach. This allows to calibrate the standard collective coordinate approach without prior knowledge of which node will desynchronize. We introduce a second mesoscopic reduction, utilizing the same particular topological structure, which allows for a quantitative dynamical description of the phases near bifurcation. The mesoscopic reductions significantly reduce the computational complexity of the collective coordinate approach, reducing from $mathcal{O}(N^2)$ to $mathcal{O}(1)$. We perform numerical simulations for ErdH{o}s-Renyi networks and for modified Barabasi-Albert networks demonstrating excellent quantitative agreement at and close to bifurcation.
We formulate a mathematical model for daily activities of a cow (eating, lying down, and standing) in terms of a piecewise affine dynamical system. We analyze the properties of this bovine dynamical system representing the single animal and develop an exact integrative form as a discrete-time mapping. We then couple multiple cow oscillators together to study synchrony and cooperation in cattle herds. We comment on the relevant biology and discuss extensions of our model. With this abstract approach, we not only investigate equations with interesting dynamics but also develop interesting biological predictions. In particular, our model illustrates that it is possible for cows to synchronize emph{less} when the coupling is increased.
Model reduction techniques have been widely used to study the collective behavior of globally coupled oscillators. However, most approaches assume that there are infinitely many oscillators. Here we propose a new ansatz, based on the collective coordinate approach, that reproduces the collective dynamics of the Kuramoto model for finite networks to high accuracy, yields the same bifurcation structure in the thermodynamic limit of infinitely many oscillators as previous approaches, and additionally captures the dynamics of the order parameter in the thermodynamic limit, including critical slowing down that results from a cascade of saddle-node bifurcations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا