Raman spectrum of 1T-WTe2 under tensile strain: A first-principles prediction


Abstract in English

Monolayer WTe2 attracts rapidly growing interests for its large-gap quantum spin Hall effect,which enables promising apllications in flexible logic devices. Due to one-dimensional W-W chains,1T-WTe2 exhibits unique anisotropic structure and promising properties, which can be modified by simply applying strains. Based on the first-principles simulations, we show that phonon branch undergoes soft down to negative frequency at special q points under different critical strains, i.e., epsilon_a = 11.55 percent along a-axis (with W-W chains) direction, epsilon_b = 7.0 percent along b-axis direction and epsilon_ab = 8.44 percent along biaxial direction. Before each critical strain, the Raman-shift of A1_g, A3_g, and A4_g modes, corresponding to the main peaks in Raman spectra of 1T-WTe2 , shows anisotropic response to uniaxial strain but most sensitive to biaxial strain. Interestingly, we find that the frequency shift of A3_g mode show parabolic characters of strained 1T-WTe2, then we split it into two parts and it shows a Raman-shift transition at about 5 percent strains. While for the A1_g and A4_g modes,the frequencies change linearly. Through careful structure and vibration analysis, we try to explain these Raman irregularity in strained 1T-WTe2.

Download