No Arabic abstract
Theoretical models of stellar evolution predict that most of the lithium inside a star is destroyed as the star becomes a red giant. However, observations reveal that about 1% of red giants are peculiarly rich in lithium, often exceeding the amount in the interstellar medium or predicted from the Big Bang. With only about 150 lithium-rich giants discovered in the past four decades, and no distinguishing properties other than lithium enhancement, the origin of lithium-rich giant stars is one of the oldest problems in stellar astrophysics. Here we report the discovery of 2,330 low-mass (1 to 3$,M_odot$) lithium-rich giant stars, which we argue are consistent with internal lithium production that is driven by tidal spin-up by a binary companion. Our sample reveals that most lithium-rich giants have helium-burning cores ($80^{+7}_{-6}%$), and that the frequency of lithium-rich giants rises with increasing stellar metallicity. We find that while planet accretion may explain some lithium-rich giants, it cannot account for the majority that have helium-burning cores. We rule out most other proposed explanations as the primary mechanism for lithium-rich giants, including all stages related to single star evolution. Our analysis shows that giants remain lithium-rich for only about two million years. A prediction from this lithium depletion timescale is that most lithium-rich giants with a helium-burning core have a binary companion.
We investigate the tidal interactions of a red giant with a main sequence in the dense stellar core of globular clusters by Smoothed Particle Hydrodynamics method. Two models of $0.8 msun$ red giant with the surface radii 20 and $85 R_sun$ are used with 0.6 or $0.8M_sun$ main sequence star treated as a point mass. We demonstrate that even for the wide encounters that two stars fly apart, the angular momentum of orbital motion can be deposited into the red giant envelope to such an extent as to trigger rotational mixing and to explain the fast rotation observed for the horizontal branch stars, and also that sufficient mass can be accreted on the main sequence stars to disguise their surface convective zone with the matter from the red giant envelope. On the basis of the present results, we discuss the parameter dependence of these transfer characteristics with non-linear effects taken into account, and derive fitting formulae to give the amounts of energy and angular momentum deposited into the red giant and of mass accreted onto the perturber as functions of stellar parameters and the impact parameter of encounter. These formulae are applicable to the encounters not only of the red giants but also of the main sequence stars, and useful in the study of the evolution of stellar systems with the star-star interactions taken into account.
According to standard stellar evolution, lithium is destroyed throughout most of the evolution of low- to intermediate-mass stars. However, a number of evolved stars on the red giant branch (RGB) and the asymptotic giant branch (AGB) are known to contain a considerable amount of Li, whose origin is not always understood well. Here we present the latest development on the observational side to obtain a better understanding of Li-rich K giants (RGB), moderately Li-rich low-mass stars on the AGB, as well as very Li-rich intermediate-mass AGB stars possibly undergoing the standard hot bottom burning phase. These last ones probably also enrich the interstellar medium with freshly produced Li.
Lithium has confused scientists for decades at almost each scale of the universe. Lithium-rich giants are peculiar stars with lithium abundances over model prediction. A large fraction of lithium-rich low-mass evolved stars are traditionally supposed to be red giant branch (RGB) stars. Recent studies, however, report that red clump (RC) stars are more frequent than RGB. Here, we present a uniquely large systematic study combining the direct asteroseismic analysis with the spectroscopy on the lithium-rich stars. The majority of lithium-rich stars are confirmed to be RCs, whereas RGBs are minor. We reveal that the distribution of lithium-rich RGBs steeply decline with the increasing lithium abundance, showing an upper limit around 2.6 dex, whereas the Li abundances of RCs extend to much higher values. We also find that the distributions of mass and nitrogen abundance are notably different between RC and RGB stars. These findings indicate that there is still unknown process that significantly affects surface chemical composition in low-mass stellar evolution.
During the past 10 years the unprecedented quality and frequency resolution of asteroseismic data provided by space photometry has revolutionized the study of red-giant stars providing us with the possibility to probe the interior of thousands of these targets. Our aim is to present an asteroseismic tool which allows to determine the total angular momentum of stars, without a priori inference of their internal rotational profile. We adopt and adapt to red giants the asteroseismic inversion technique developed for the case of the Sun. The method has been tested assuming different artificial sets of data, including also modes with harmonic degree l> 1. We estimate with an accuracy of 14.5% the total angular momentum of the red-giant star KIC 4448777 observed by Kepler during the first four consecutive years of operation.} Our results indicate that the measurement of the total angular momentum of red-giant stars can be determined with a fairly high precision by means of asteroseismology by using a small set of rotational splittings of only dipolar modes and that our method, based on observations of stellar pulsations, provides a powerful mean for testing and modeling transport of angular momentum in stars.
Context. The abundances of the three main isotopes of oxygen are altered in the course of the CNO-cycle. When the first dredge-up mixes the burning products to the surface, the nucleosynthesis processes can be probed by measuring oxygen isotopic ratios. Aims. By measuring 16O/17O and 16O/18O in red giants of known mass we compare the isotope ratios with predictions from stellar and galactic evolution modelling. Methods. Oxygen isotopic ratios were derived from the K-band spectra of six red giants. The sample red giants are open cluster members with known masses of between 1.8 and 4.5 Msun . The abundance determination employs synthetic spectra calculated with the COMARCS code. The effect of uncertainties in the nuclear reaction rates, the mixing length, and of a change in the initial abundance of the oxygen isotopes was determined by a set of nucleosynthesis and mixing models using the FUNS code. Results. The observed 16O/17O ratios are in good agreement with the model results, even if the measured values do not present clear evidence of a variation with the stellar mass. The observed 16O/18O ratios are clearly lower than the predictions from our reference model. Variations in nuclear reaction rates and mixing length parameter both have only a very weak effect on the predicted values. The 12C/13C ratios of the K giants studied implies the absence of extra-mixing in these objects. Conclusions. A comparison with galactic chemical evolution models indicates that the 16O/18O abundance ratio underwent a faster decrease than predicted. To explain the observed ratios, the most likely scenario is a higher initial 18O abundance combined with a lower initial 16 O abundance. Comparing the measured 18 O/17 O ratio with the corresponding value for the ISM points towards an initial enhancement of 17O as well. Limitations imposed by the observations prevent this from being a conclusive result.