Do you want to publish a course? Click here

Performance of a GridPix TPC readout based on the Timepix3 chip

244   0   0.0 ( 0 )
 Added by Cornelis Ligtenberg
 Publication date 2019
  fields Physics
and research's language is English
 Authors C. Ligtenberg




Ask ChatGPT about the research

With the ultimate goal of developing a pixel-based readout for a TPC at the ILC, a GridPix readout system consisting of one Timepix3 chip with an integrated amplification grid was embedded in a prototype detector. The performance was studied in a testbeam with 2.5 GeV electrons at the ELSA accelerator in Bonn. The error on the track position measurement both in the drift direction and in the readout plane is dominated by diffusion. Systematic uncertainties are limited to below 10 $mu$m. The GridPix can detect single ionization electrons with high efficiency, which allows for energy loss measurements and particle identification. From a truncated sum, an energy loss (dE/dx) resolution of 4.1% is found for an effective track length of 1 m. Using the same type of chips, a Quad module was developed that can be tiled to cover a TPC readout plane at the ILC. Simulation studies show that a pixel readout can improve the momentum resolution of a TPC at the ILC by about 20%.



rate research

Read More

For the International Large Detector (ILD) at the planned International Linear Collider (ILC) a Time Projection Chamber (TPC) is foreseen as the main tracking detector. To achieve the required point resolution, Micro-Pattern Gaseous Detectors (MPGD) will be used in the amplification stage. A readout module using a stack of three Gas Electron Multipliers (GEM) for gas amplification was developed at DESY and tested at the DESY II Test Beam Facility. After introducing the readout module and the infrastructure at the test beam facility, the performance related to single point and double-hit resolution of three of these modules is presented. This is followed by results on the particle identification capabilities of the system, using the specific energy loss dE/dx, and simulation studies, aimed to investigate and quantify the impact of high granularity on dE/dx resolution. In addition, a new and improved TPC field cage and the LYCORIS Large-Area Silicon-Strip Telescope for the test beam are described. The LYCORIS beam telescope is foreseen to provide a precise reference of the particle trajectory to validate the momentum resolution measured with a large TPC prototype. For this purpose, it is being installed and tested at the test beam facility within the so-called PCMAG (Persistent Current Magnet).
A gaseous pixel readout module with four GridPix chips, called the quad, has been developed as a building block for a large time projection chamber readout plane. The quad module has dimensions 39.6 mm $times$ 28.38 mm and an active surface coverage of 68.9%. The GridPix chip consists of a Timepix3 chip with integrated amplification grid and have a high efficiency to detect single ionisation electrons, which enable to make a precise track position measurement. A quad module was installed in a small time projection chamber and measurements of 2.5 GeV electrons were performed at the ELSA accelerator in Bonn, where a silicon telescope was used to provide a reference track. The error on the track position measurement, both in the pixel plane and drift direction, is dominated by diffusion. The quad was designed to have minimum electrical field inhomogeneities and distortions, achieving systematics of better than 13 $mu$m in the pixel plane. The resolution of the setup is 41 $mu$m, where the total systematic error of the quad detector is 24 $mu$m.
ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance including a comparison of the new cryogenic charge-sensitive preamplifiers with the previously used room-temperature-operated charge preamplifiers.
The performance and long term stability of an optically readout Time Projection Chamber with an electron amplification structure based on three Gas Electron Multipliers was studied. He/CF$_4$ based gas mixtures were used in two different proportions (60/40 and 70/30) in a CYGNO prototype with 7 litres sensitive volume. With electrical configurations providing very similar electron gains, an almost full detection efficiency in the whole detector volume was found with both mixtures, while a light yield about 20% larger for the 60/40 was found. The electrostatic stability was tested by monitoring voltages and currents during 25 days. The detector worked in very stable and safe condition for the whole period. In the presence of less CF$_4$, a larger probability of unstable events was clearly detected.
Optical readout of large Time Projection Chambers (TPCs) with multiple Gas Electron Multipliers (GEMs) amplification stages has shown to provide very interesting performances for high energy particle tracking. Proposed applications for low-energy and rare event studies, such as Dark Matter search, ask for demanding performance in the keV energy range. The performance of such a readout was studied in details as a function of the electric field configuration and GEM gain by using a $^{55}$Fe source within a 7 litre sensitive volume detector developed as a part of the R&D for the CYGNUS project. Results reported in this paper show that the low noise level of the sensor allows to operate with a 2~keV threshold while keeping a rate of fake-events lesser than 10 per year. In this configuration, a detection efficiency well above 95% along with an energy resolution ($sigma$) of 18% is obtained for the 5.9 keV photons, demonstrating the very promising capabilities of this technique.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا