No Arabic abstract
Supercontinuum (SC) generation via femtosecond (fs) pumping in all-normal-dispersion (ANDi) fiber is predicted to offer completely coherent broadening mechanisms, potentially allowing for substantially reduced noise levels in comparison to those obtained when operating in the anomalous dispersion regime. However, previous studies of SC noise typically treat only the quantum noise, typically in the form of one-photon-per-mode noise, and do not consider other technical noise contributions, such as the stability of the pump laser, which become important when the broadening mechanism itself is coherent. In this work, we discuss the influence of the amplitude and pulse length noise of the pump laser, both added separately and combined. We show that for a typical mode-locked laser, in which the peak power and pulse duration are anticorrelated, their combined impact on the SC noise is generally smaller than in isolation. This means that the supercontinuum noise is smaller than the noise of the mode-locked pump laser itself, a fact that was recently observed in experiments but not explained. Our detailed numerical analysis shows that the coherence of ANDi SC generation is considerably reduced on the spectral edges when realistic pump laser noise levels are taken into account.
In the numerical modelling of cascaded mid-infrared (IR) supercontinuum generation (SCG) we have studied how an ensemble of spectrally and temporally distributed solitons from the long-wavelength part of an SC evolves and interacts when coupled into the normal dispersion regime of a highly nonlinear chalcogenide fiber. This has revealed a novel fundamental phenomenon - the generation of a temporally and spectrally delocalized high energy rogue wave in the normal dispersion regime in the form of a strongly self-phase-modulation (SPM) broadened pulse. Along the local SPM shape the rogue wave is localized both temporally and spectrally. We demonstrate that this novel form of rogue wave is generated by inter-pulse Raman amplification between the SPM lobes of the many pulses causing the initially most delayed pulse to swallow the energy of all the other pulses. We further demonstrate that this novel type of rogue wave generation is a key effect in efficient long-wavelength mid-IR SCG based on the cascading of SC spectra and demonstrate how the mid-IR SC spectrum can be shaped by manipulating the rogue wave.
Ability to selectively enhance the amplitude and maintain high coherence of the supercontinuum signal with long pulses is gaining significance. In this work an extra degree of freedom afforded by varying the dispersion profile of a waveguide is utilized to selectively enhance supercontinuum. As much as 16 dB signal enhancement in the telecom window and 100 nm of wavelength extension is achieved with a cascaded waveguide, compared to a fixed dispersion waveguide. Waveguide tapering, in particular with increasing width, is determined to have a flatter and more coherent supercontinuum than a fixed dispersion waveguide when longer input pulses are used. Furthermore, due to the strong birefringence of an asymmetric silicon waveguide the supercontinuum signal is broadened by pumping simultaneously with both quasitransverse electric (TE) and quasi-transverse magnetic (TM) mode in the anomalous dispersion regime. Thus, by controlling the dispersion for the two modes selective signal generation is obtained. Such waveguides offer several advantages over optical fiber as the variation in dispersion can be controlled with greater flexibility in an integrated platform. This work paves the way forward for various applications in fields ranging from medicine to telecom where specific wavelength windows need to be targeted.
Ultrafast supercontinuum generation in gas-filled waveguides is one enabling technology for many intriguing application ranging from attosecond metrology towards biophotonics, with the amount of spectral broadening crucially depending on the pulse dispersion of the propagating mode. Here we show that the structural resonances in gas-filled anti-resonant hollow core optical fiber provide an additional degree of freedom in dispersion engineering, allowing for the generation of more than three octaves of broadband light ranging deep UV wavelength towards the near infrared.Our observation relies on the introduction of a geometric-induced resonance in the spectral vicinity of the pump laser outperforming the gas dispersion, thus yielding a dispersion being independent of core size, which is highly relevant for scaling input powers.Using a Krypton filled fiber we observe spectral broadening from 200 nm towards 1.7 mu m at an output energy of about 23 mu J within a single mode across the entire spectral bandwidth. Simulations show that the efficient frequency generation results from a new physical effect the soliton explosion originating from the strongly non-adiabatic mode dispersion profile.This effect alongside with the dispersion tuning capability of the fiber will enable compact ultrabroadband high energy sources spanning from the UV to the mid-infrared spectral range.
Improved long-wavelength transmission and supercontinuum (SC) generation is demonstrated by anti-reflective (AR) nanoimprinting and tapering of chalcogenide photonic crystal fibers (PCF). Using a SC source input spanning from 1-4.2 {mu}m, the total transmission of a 15 {mu}m core diameter PCF was improved from ~53 % to ~74 % by nanoimprinting of AR structures on both input- and output facets of the fiber. Through a combined effect of reduced reflection and red-shifting of the spectrum to 5 {mu}m, the relative transmission of light >3.5 {mu}m in the same fiber was increased by 60.2 %. Further extension of the spectrum to 8 {mu}m was achieved using tapered fibers. The spectral broadening dynamics and output power was investigated using different taper parameters and pulse repetition rates.
We study modulational instability (MI) in optical fibers with random group velocity dispersion (GVD) generated by sharply localized perturbations of a normal GVD fiber that are either randomly or periodically placed along the fiber and that have random strength. This perturbation leads to the appearance of low frequency MI side lobes that grow with the strength of the perturbations, whereas they are faded by randomness in their position. If the random perturbations exhibit a finite average value, they can be compared with periodically perturbed fibers, where Arnold tongues appear. In that case, increased randomness in the strengths of the variations tends to affect the Arnold tongues less than increased randomness in their positions.