No Arabic abstract
The cosmological dynamics of a quintessence model based on real gas with general equation of state is presented within the framework of a three-dimensional dynamical system describing the time evolution of the number density, the Hubble parameter, and the temperature. Two global first integrals are found and examples for gas with virial expansion and van der Waals gas are presented. The van der Waals system is completely integrable. In addition to the unbounded trajectories, stemming from the presence of the conserved quantities, stable periodic solutions (closed orbits) also exist under certain conditions and these represent models of a cyclic Universe. The cyclic solutions exhibit regions characterised by inflation and deflation, while the open trajectories are characterised by inflation in a fly-by near an unstable critical point.
Recently a cubic Galileon cosmological model was derived by the assumption that the field equations are invariant under the action of point transformations. The cubic Galileon model admits a second conservation law which means that the field equations form an integrable system. The analysis of the critical points for this integrable model is the main subject of this work. To perform the analysis, we work on dimensionless variables different from that of the Hubble normalization. New critical points are derived while the gravitational effects which follow from the cubic term are studied.
New high-precision observations are now possible to constrain different gravity theories. To examine the accelerated expansion of the Universe, we used the newly proposed $f(Q,T)$ gravity, where $Q$ is the non-metricity, and $T$ is the trace of the energy-momentum tensor. The investigation is carried out using a parameterized effective equation of state with two parameters, $m$ and $n$. We have also considered the linear form of $f(Q,T)= Q+bT$, where $b$ is constant. By constraining the model with the recently published 1048 Pantheon sample, we were able to find the best fitting values for the parameters $b$, $m$, and $n$. The model appears to be in good agreement with the observations. Finally, we analyzed the behavior of the deceleration parameter and equation of state parameter. The results support the feasibility of $f(Q,T)$ as a promising theory of gravity, illuminating a new direction towards explaining the Universes dark sector.
We investigate the cosmological applications of fluids having an equation of state which is the analog to the one related to the isotropic deformation of crystalline solids, that is containing logarithmic terms of the energy density, allowing additionally for a bulk viscosity. We consider two classes of scenarios and we show that they are both capable of triggering the transition from deceleration to acceleration at late times. Furthermore, we confront the scenarios with data from Supernovae type Ia (SN Ia) and Hubble function observations, showing that the agreement is excellent. Moreover, we perform a dynamical system analysis and we show that there exist asymptotic accelerating attractors, arisen from the logarithmic terms as well as from the viscosity, which in most cases correspond to a phantom late-time evolution. Finally, for some parameter regions we obtain a nearly de Sitter late-time attractor, which is a significant capability of the scenario since the dark energy, although dynamical, stabilizes at the cosmological constant value.
In recent literature there appeared conflicting claims about whether the Ozsvath-Robinson-Rozga family of type N electrovac spacetimes of the Kundt class with $Lambda$ is complete. We show that indeed it is.
We show that the extended cosmological equation-of-state developed starting from a Chaplygin equation-of-state, recently applied to stellar modeling, is a viable dark energy model consistent with standard scalar potentials. Moreover we find a Lagrangian formulation based on a canonical scalar field with the appropriate self-interaction potential. Finally, we fit the scalar potential obtained numerically with concrete functions well studied in the literature. Our results may be of interest to model builders and particle physicists.