Do you want to publish a course? Click here

Parallel-in-time integration of Kinematic Dynamos

58   0   0.0 ( 0 )
 Added by Andrew Clarke
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The precise mechanisms responsible for the natural dynamos in the Earth and Sun are still not fully understood. Numerical simulations of natural dynamos are extremely computationally intensive, and are carried out in parameter regimes many orders of magnitude away from real conditions. Parallelization in space is a common strategy to speed up simulations on high performance computers, but eventually hits a scaling limit. Additional directions of parallelization are desirable to utilise the high number of processor cores now available. Parallel-in-time methods can deliver speed up in addition to that offered by spatial partitioning but have not yet been applied to dynamo simulations. This paper investigates the feasibility of using the parallel-in-time algorithm Parareal to speed up initial value problem simulations of the kinematic dynamo, using the open source Dedalus spectral solver. Both the time independent Roberts and time dependent Galloway-Proctor 2.5D dynamos are investigated over a range of magnetic Reynolds numbers. Speed ups beyond those possible from spatial parallelization are found in both cases. Results for the Galloway-Proctor flow are promising, with Parareal efficiency found to be close to 0.3. Roberts flow results are less efficient, but Parareal still shows some speed up over spatial parallelization alone. Parallel in space and time speed ups of $sim300$ were found for 1600 cores for the Galloway-Proctor flow, with total parallel efficiency of $sim0.16$.



rate research

Read More

Rayleigh-Benard convection (RBC) is a fundamental problem of fluid dynamics, with many applications to geophysical, astrophysical, and industrial flows. Understanding RBC at parameter regimes of interest requires complex physical or numerical experiments. Numerical simulations require large amounts of computational resources; in order to more efficiently use the large numbers of processors now available in large high performance computing clusters, novel parallelisation strategies are required. To this end, we investigate the performance of the parallel-in-time algorithm Parareal when used in numerical simulations of RBC. We present the first parallel-in-time speedups for RBC simulations at finite Prandtl number. We also investigate the problem of convergence of Parareal with respect to to statistical numerical quantities, such as the Nusselt number, and discuss the importance of reliable online stopping criteria in these cases.
125 - B. Favier , M.R.E. Proctor 2013
We consider the classical problem of kinematic dynamo action in simple steady flows. Due to the adjointness of the induction operator, we show that the growth rate of the dynamo will be exactly the same for two types of magnetic boundary conditions: the magnetic field can be normal (infinite magnetic permeability, also called pseudo-vacuum) or tangent (perfect electrical conductor) to the boundaries of the domain. These boundary conditions correspond to well-defined physical limits often used in numerical models and relevant to laboratory experiments. The only constraint is for the velocity field u to be reversible, meaning there exists a transformation changing u into -u. We illustrate this surprising property using S2T2 type of flows in spherical geometry inspired by Dudley and James (1989). Using both types of boundary conditions, it is shown that the growth rates of the dynamos are identical, although the corresponding magnetic eigenmodes are drastically different.
The Reynolds-Averaged Navier-Stokes equations and the Large-Eddy Simulation equations can be coupled using a transition function to switch from a set of equations applied in some areas of a domain to the other set in the other part of the domain. Following this idea, different time integration schemes can be coupled. In this context, we developed a hybrid time integration scheme that spatially couples the explicit scheme of Heun and the implicit scheme of Crank and Nicolson using a dedicated transition function. This scheme is linearly stable and second-order accurate. In this paper, an extension of this hybrid scheme is introduced to deal with a temporal adaptive procedure. The idea is to treat the time integration procedure with unstructured grids as it is performed with Cartesian grids with local mesh refinement. Depending on its characteristic size, each mesh cell is assigned a rank. And for two cells from two consecutive ranks, the ratio of the associated time steps for time marching the solutions is $2$. As a consequence, the cells with the lowest rank iterate more than the other ones to reach the same physical time. In a finite-volume context, a key ingredient is to keep the conservation property for the interfaces that separate two cells of different ranks. After introducing the different schemes, the paper recalls briefly the coupling procedure, and details the extension to the temporal adaptive procedure. The new time integration scheme is validated with the propagation of 1D wave packet, the Sods tube, and the transport of a bi-dimensional vortex in an uniform flow.
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently-developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
This paper addresses how two time integration schemes, the Heuns scheme for explicit time integration and the second-order Crank-Nicolson scheme for implicit time integration, can be coupled spatially. This coupling is the prerequisite to perform a coupled Large Eddy Simulation / Reynolds Averaged Navier-Stokes computation in an industrial context, using the implicit time procedure for the boundary layer (RANS) and the explicit time integration procedure in the LES region. The coupling procedure is designed in order to switch from explicit to implicit time integrations as fast as possible, while maintaining stability. After introducing the different schemes, the paper presents the initial coupling procedure adapted from a published reference and shows that it can amplify some numerical waves. An alternative procedure, studied in a coupled time/space framework, is shown to be stable and with spectral properties in agreement with the requirements of industrial applications. The coupling technique is validated with standard test cases, ranging from one-dimensional to three-dimensional flows.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا