Do you want to publish a course? Click here

The Isoscalar Mesons and Exotic States in Light Front Holographic QCD

110   0   0.0 ( 0 )
 Added by Liping Zou
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this article a systematic quantitative analysis of the isoscalar bosonic states is performed in the framework of supersymmetric light front holographic QCD. It is shown that the spectroscopy of the $eta$ and $h$ mesons can be well described if one additional mass parameter -- which corresponds to the hard breaking of chiral $U(1)$ symmetry in standard QCD -- is introduced. The mass difference of the $eta$ and $eta$ isoscalar mesons is then determined by the strange quark mass content of the $eta$. The theory also predicts the existence of isoscalar tetraquarks which are bound states of diquarks and anti-diquarks. The candidates for these exotic isoscalar tetraquarks are identified. In particular, the $f_0(1500)$ is identified as isoscalar tetraquark; the predicted mass value 1.52 GeV agrees with the measured experimental value within the model uncertainties.



rate research

Read More

The breaking of chiral symmetry in holographic light-front QCD is encoded in its longitudinal dynamics with its chiral limit protected by the superconformal algebraic structure which governs its transverse dynamics. The scale in the longitudinal light-front Hamiltonian determines the confinement strength in this direction: It is also responsible for most of the light meson ground state mass consistent with the Gell-Mann-Oakes-Renner constraint. Longitudinal confinement and the breaking of chiral symmetry are found to be different manifestations of the same underlying dynamics like in t Hooft large $N_C$ QCD(1 + 1) model.
We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock components $ket {qqqqbar{q}}$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$%$ in the proton and about 40$%$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$_5$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.
The holographic light-front QCD framework provides a unified nonperturbative description of the hadron mass spectrum, form factors and quark distributions. In this article we extend holographic QCD in order to describe the gluonic distribution in both the proton and pion from the coupling of the metric fluctuations induced by the spin-two Pomeron with the energy momentum tensor in anti-de Sitter space, together with constraints imposed by the Veneziano model without additional free parameters. The gluonic and quark distributions are shown to have significantly different effective QCD scales.
The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function $w(x)$ which incorporates Regge behavior at small $x$ and inclusive counting rules at $x to 1$. A simple ansatz for $w(x)$ which fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.
Starting from the Hamiltonian equation of motion in QCD we find a single variable light-front equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. This light-front wave equation is equivalent to the equations of motion which describe the propagation of spin-$J$ modes on anti-de Sitter (AdS) space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا