Condensates in annuli: Dimensionality of the variance


Abstract in English

Static and dynamic properties of Bose-Einstein condensates in annular traps are investigated by solving the many-boson Schrodinger equation numerically accurately using the multiconfigurational time-dependent Hartree for bosons method. We concentrate on weakly-interacting bosons exhibiting low depletion. Analysis of the mean-field position variance, which accounts for the shape of the density only, and the many-body position variance, which incorporates a tiny amount of excitations through the reduced two-particle density matrix, shows that the former behaves essentially as a quasi-one-dimensional quantity whereas the latter as a two-dimensional quantity. This brings another dimension to the physics of bosons in ring-shaped traps.

Download