Homogeneous nucleation of ice


Abstract in English

Ice nucleation is a process of great relevance in physics, chemistry, technology and environmental sciences, much theoretical and experimental efforts have been devoted to its understanding, but still it remains a topic of intense research. We shed light on this phenomenon by performing atomistic based simulations. Using metadynamics and a carefully designed set of collective variables, reversible transitions between water and ice are able to be simulated. We find that water freezes into a stacking disordered structure with the all-atom TIP4P/Ice model, and the features of the critical nucleus of nucleation at the microscopic level are revealed. Our results are in agreement with recent experimental and other theoretical works and confirm that nucleation is preceded by a large increase in tetrahedrally coordinated water molecules.

Download