Do you want to publish a course? Click here

Disorder and Zeeman coupling induced gap-filling states in the nodeless chiral superconducting Bi/Ni bilayer system

250   0   0.0 ( 0 )
 Added by Mehdi Kargarian
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the recently discovered time-reversal symmetry-breaking superconductivity in epitaxial Bi/Ni bilayer system with transition temperature $T_capprox 4.2$K and the observation of zero-bias anomaly in tunneling measurements, we show that gap-filling states can appear in the fully gapped $d_{xy}pm id_{x^2-y^2}$ superconducting states. We consider a model of helical electron states with d-wave pairing. In particular, we show that both magnetic and non-magnetic impurities can create states within the superconducting gap. Alternatively, we also show that the coupling of the electron spins to the in-plane Zeeman field provided by nickel can also create gap-filling states by producing Bogoliubov Fermi surfaces. Our findings may explain the origin of zero-bias anomaly observed in the point-contact tunneling measurements.



rate research

Read More

Epitaxial bilayer films of Bi(110) and Ni host a time-reversal symmetry (TRS) breaking superconducting order with an unexpectedly high transition temperature $T_c = 4.1$ K. Using time-domain THz spectroscopy, we measure the low energy electrodynamic response of a Bi/Ni bilayer thin film from $0.2$ THz to $2$ THz as a function of temperature and magnetic field. We analyze the data in the context of a BCS-like superconductor with a finite normal-state scattering rate. In zero magnetic field, all states in the film become fully gapped, providing important constraints into possible pairing symmetries. Our data appears to rule out the odd-frequency pairing that is natural for many ferromagnetic-superconductor interfaces. By analyzing the magnetic field-dependent response in terms of a pair-breaking parameter, we determine that superconductivity develops over the entire bilayer sample which may point to the $p$-wave like nature of unconventional superconductivity.
The density of states of the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br, measured by scanning tunneling spectroscopy on textit{in-situ} cleaved surfaces, reveals a logarithmic suppression near the Fermi edge persisting above the critical temperature $T_mathrm{c}$. A soft Hubbard gap as predicted by the Anderson-Hubbard model for systems with disorder exactly describes the experimentally observed suppression. The electronic disorder also explains the diminished coherence peaks of the quasiparticle density of states below $T_mathrm{c}$.
179 - T. Yoshida , W. Malaeb , S. Ideta 2012
Relationship between the superconducting gap and the pseudogap has been the subject of controversies. In order to clarify this issue, we have studied the superconducting gap and pseudogap of the high-Tc superconductor La2-xSrxCuO4 (x=0.10, 0.14) by angle-resolved photoemission spectroscopy (ARPES). Through the analysis of the ARPES spectra above and below Tc, we have identified a superconducting coherence peak even in the anti-nodal region on top of the pseudogap of a larger energy scale. The superconducting peak energy nearly follows the pure d-wave form. The d-wave order parameter Delta_0 [defined by Delta(k)=Delta_0(cos(kxa)-cos(kya)) ] for x=0.10 and 0.14 are nearly the same, Delta_0 ~ 12-14 meV, leading to strong coupling 2Delta_0/kB Tc ~ 10. The present result indicates that the pseudogap and the superconducting gap are distinct phenomena and can be described by the two-gap scenario.
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensional Hubbard model are presented which show that this model qualitatively describes this gap dichotomy: One gap (antinodal) increases with less doping, a behavior long considered as reflecting the general gap behavior of the HTSC. On the other hand, the near-nodal gap does even slightly decrease with underdoping. An explanation of this unexpected behavior is given which emphasizes the crucial role of spin fluctuations in the pairing mechanism.
The nature of superconductivity in heavy-fermion materials is a subject under intense debate, and controlling this many-body state is central for its eventual understanding. Here, we examine how proximity effects may change this phenomenon, by investigating the effects of an additional metallic layer on the top of a Kondo-lattice, and allowing for pairing in the former. We analyze a bilayer Kondo Lattice Model with an on-site Hubbard interaction, $-U$, on the additional layer, using a mean-field approach. For $U=0$, we notice a drastic change in the density-of-states due to multiple-orbital singlet resonating combinations. It destroys the well-known Kondo insulator at half filling, leading to a metallic ground state, which, in turn, enhances antiferromagnetism through the polarization of the conduction electrons. For $U eq 0$, a superconducting Kondo state sets in at zero temperature, with the occurrence of unconventional pairing amplitudes involving $f$-electrons. We establish that this remarkable feature is only possible due to the proximity effects of the additional layer. At finite temperatures we find that the critical superconducting temperature, $T_c$, decreases with the interlayer hybridization. We have also established that a zero temperature superconducting amplitude tracks $T_c$, which reminisces the BCS proportionality between the superconducting gap and $T_c$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا