Do you want to publish a course? Click here

Smallest Halos in Thermal Wino Dark Matter

70   0   0.0 ( 0 )
 Added by Ayuki Kamada
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Mini) split supersymmetry explains the observed Higgs mass and evades stringent constraints, while keeping good features of TeV-scale supersymmetry other than the little hierarchy problem. Such scenarios naturally predict thermal wino dark matter whose mass is around $3 , {rm TeV}$. Its non-perturbatively enhanced annihilation is a promising target of indirect detection experiments. It is known that identifying the smallest halos is essential for reducing an uncertainty in interpreting indirect detection experiments. Despite its importance, the smallest halos of thermal wino dark matter have not been well understood and thus are investigated in this work. In particular, we remark on two aspects: 1) the neutral wino is in kinetic equilibrium with primordial plasma predominantly through inelastic processes involving the slightly heavier charged wino; and 2) the resultant density contrast shows larger powers at dark acoustic oscillation peaks than in cold dark matter, which is known as an overshooting phenomenon. By taking them into account, we provide a rigorous estimate of the boost factor. Our result facilitates accurately pinning down thermal wino dark matter through vigorous efforts in indirect detection experiments.



rate research

Read More

We discuss the indirect detection of the wino dark matter utilizing gamma-ray observations of dwarf spheroidal galaxies (dSphs). After carefully reviewing current limits with particular attention to astrophysical uncertainties, we show prospects of the wino mass limit in future gamma-ray observation by the Fermi-LAT and the GAMMA-400 telescopes. We find that the improvement of the so-called $J$-factor of both the classical and the ultra-faint dSphs will play a crucial role to cover whole mass range of the wino dark matter. For example, with $delta (log_{10}J) = 0.1$ for both the classical and the ultra-faint dSphs, whole wino dark matter mass range can be covered by 15 years and 10 years data at the Fermi-LAT and GAMMA-400 telescopes, respectively.
We carry out a detailed study of the confinement phase transition in a dark sector with a $SU(N)$ gauge group and a single generation of dark heavy quark. We focus on heavy enough quarks such that their abundance freezes out before the phase transition and the phase transition is of first-order. We find that during this phase transition the quarks are trapped inside contracting pockets of the deconfined phase and are compressed enough to interact at a significant rate, giving rise to a second stage of annihilation that can dramatically change the resulting dark matter abundance. As a result, the dark matter can be heavier than the often-quoted unitarity bound of $sim100~$TeV. Our findings are almost completely independent of the details of the portal between the dark sector and the Standard Model. We comment briefly on possible signals of such a sector. Our main findings are summarized in a companion letter, while here we provide further details on different parts of the calculation.
String/M theory compactifications with low energy supersymmetry tend to predict that dark matter has two components: axions and WIMPs cite{1004.5138,1204.2795}. In accord with this, we show that the tentative 130 GeV gamma-line signal reported in cite{1204.2797} can be interpreted as arising from the annihilation of 145 GeV mass, Wino-like WIMPs into a Z-boson and a photon. In this context, the signal implies a second component of dark matter which we interpret as being composed of axions - the relative Wino/Axion abundances being approximately equal. Further predictions are implied: signals in both diffuse and monochromatic photons from dwarf spheroidal galaxies; monochromatic photons with energy 145 GeV; for the LHC, the Higgs boson mass has been predicted in this framework cite{1112.1059}, and the current Higgs limits provide interesting constraints on the mass of the Gluino.
If the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, its main annihilation channel is into W+W-, while the annihilation into light fermions is helicity suppressed. As pointed out recently, the radiation of gauge bosons from the initial state of the annihilation lifts the suppression and opens up an s-wave contribution to the cross section. We perform the full tree-level calculation of Dark Matter annihilations, including electroweak bremsstrahlung, in the context of an explicit model corresponding to the supersymmetric wino. We find that the fermion channel can become as important as the di-boson one. This result has significant implications for the predictions of the fluxes of particles originating from Dark Matter annihilations.
146 - Laura G. Book 2010
We have analyzed high resolution N-body simulations of dark matter halos, focusing specifically on the evolution of angular momentum. We find that not only is individual particle angular momentum not conserved, but the angular momentum of radial shells also varies over the age of the Universe by up to factors of a few. We find that torques from external structure are the most likely cause for this distribution shift. Since the model of adiabatic contraction that is often applied to model the effects of galaxy evolution on the dark-matter density profile in a halo assumes angular momentum conservation, this variation implies that there is a fundamental limit on the possible accuracy of the adiabatic contraction model in modeling the response of DM halos to the growth of galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا