No Arabic abstract
We present a method for creating video summaries in real-time on commodity hardware. Real-time here refers to the fact that the time required for video summarization is less than the duration of the input video. First, low-level features are use to discard undesirable frames. Next, video is divided into segments, and segment-level features are extracted for each segment. Tree-based models trained on widely available video summarization and computational aesthetics datasets are then used to rank individual segments, and top-ranked segments are selected to generate the final video summary. We evaluate the proposed method on SUMME dataset and show that our method is able to achieve summarization accuracy that is comparable to that of a current state-of-the-art deep learning method, while posting significantly faster run-times. Our method on average is able to generate a video summary in time that is shorter than the duration of the video.
Interlacing is a widely used technique, for television broadcast and video recording, to double the perceived frame rate without increasing the bandwidth. But it presents annoying visual artifacts, such as flickering and silhouette serration, during the playback. Existing state-of-the-art deinterlacing methods either ignore the temporal information to provide real-time performance but lower visual quality, or estimate the motion for better deinterlacing but with a trade-off of higher computational cost. In this paper, we present the first and novel deep convolutional neural networks (DCNNs) based method to deinterlace with high visual quality and real-time performance. Unlike existing models for super-resolution problems which relies on the translation-invariant assumption, our proposed DCNN model utilizes the temporal information from both the odd and even half frames to reconstruct only the missing scanlines, and retains the given odd and even scanlines for producing the full deinterlaced frames. By further introducing a layer-sharable architecture, our system can achieve real-time performance on a single GPU. Experiments shows that our method outperforms all existing methods, in terms of reconstruction accuracy and computational performance.
We propose a novel real-time selfie video stabilization method. Our method is completely automatic and runs at 26 fps. We use a 1D linear convolutional network to directly infer the rigid moving least squares warping which implicitly balances between the global rigidity and local flexibility. Our network structure is specifically designed to stabilize the background and foreground at the same time, while providing optional control of stabilization focus (relative importance of foreground vs. background) to the users. To train our network, we collect a selfie video dataset with 1005 videos, which is significantly larger than previous selfie video datasets. We also propose a grid approximation method to the rigid moving least squares warping that enables the real-time frame warping. Our method is fully automatic and produces visually and quantitatively better results than previous real-time general video stabilization methods. Compared to previous offline selfie video methods, our approach produces comparable quality with a speed improvement of orders of magnitude.
Audio and vision are two main modalities in video data. Multimodal learning, especially for audiovisual learning, has drawn considerable attention recently, which can boost the performance of various computer vision tasks. However, in video summarization, existing approaches just exploit the visual information while neglect the audio information. In this paper, we argue that the audio modality can assist vision modality to better understand the video content and structure, and further benefit the summarization process. Motivated by this, we propose to jointly exploit the audio and visual information for the video summarization task, and develop an AudioVisual Recurrent Network (AVRN) to achieve this. Specifically, the proposed AVRN can be separated into three parts: 1) the two-stream LSTM is utilized to encode the audio and visual feature sequentially by capturing their temporal dependency. 2) the audiovisual fusion LSTM is employed to fuse the two modalities by exploring the latent consistency between them. 3) the self-attention video encoder is adopted to capture the global dependency in the video. Finally, the fused audiovisual information, and the integrated temporal and global dependencies are jointly used to predict the video summary. Practically, the experimental results on the two benchmarks, emph{i.e.,} SumMe and TVsum, have demonstrated the effectiveness of each part, and the superiority of AVRN compared to those approaches just exploiting visual information for video summarization.
In this work we present SwiftNet for real-time semisupervised video object segmentation (one-shot VOS), which reports 77.8% J &F and 70 FPS on DAVIS 2017 validation dataset, leading all present solutions in overall accuracy and speed performance. We achieve this by elaborately compressing spatiotemporal redundancy in matching-based VOS via Pixel-Adaptive Memory (PAM). Temporally, PAM adaptively triggers memory updates on frames where objects display noteworthy inter-frame variations. Spatially, PAM selectively performs memory update and match on dynamic pixels while ignoring the static ones, significantly reducing redundant computations wasted on segmentation-irrelevant pixels. To promote efficient reference encoding, light-aggregation encoder is also introduced in SwiftNet deploying reversed sub-pixel. We hope SwiftNet could set a strong and efficient baseline for real-time VOS and facilitate its application in mobile vision. The source code of SwiftNet can be found at https://github.com/haochenheheda/SwiftNet.
We present a novel algorithm for transferring artistic styles of semantically meaningful local regions of an image onto local regions of a target video while preserving its photorealism. Local regions may be selected either fully automatically from an image, through using video segmentation algorithms, or from casual user guidance such as scribbles. Our method, based on a deep neural network architecture inspired by recent work in photorealistic style transfer, is real-time and works on arbitrary inputs without runtime optimization once trained on a diverse dataset of artistic styles. By augmenting our video dataset with noisy semantic labels and jointly optimizing over style, content, mask, and temporal losses, our method can cope with a variety of imperfections in the input and produce temporally coherent videos without visual artifacts. We demonstrate our method on a variety of style images and target videos, including the ability to transfer different styles onto multiple objects simultaneously, and smoothly transition between styles in time.