Do you want to publish a course? Click here

Triggering magnetar outbursts in 3D force-free simulations

263   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter, we present the first 3D force-free general relativity simulations of the magnetosphere dynamics related to the magnetar outburst/flare phenomenology. Starting from an initial dipole configuration, we adiabatically increase the helicity by twisting the footprints of a spot on the stellar surface and follow the succession of quasi-equilibrium states until a critical twist is reached. Twisting beyond that point triggers instabilities that results in the rapid expansion of magnetic field lines, followed by reconnection, as observed in previous axi-symmetric simulations. If the injection of magnetic helicity goes on, the process is recurrent, periodically releasing a similar amount of energy, of the order of a few % of the total magnetic energy. From our current distribution, we estimate the local temperature assuming that dissipation occurs mainly in the highly resistive outermost layer of the neutron star. We find that the temperature smoothly increases with injected twist, being larger for spots located in the tropical regions than in polar regions, and rather independent of their sizes. After the injection of helicity ceases, the magnetosphere relaxes to a new stable state, in which the persistent currents maintain the footprints area slightly hotter than before the onset of the instability.



rate research

Read More

We performed one-dimensional force-free magnetodynamic numerical simulations of the propagation of Alfven waves along magnetic field lines around a spinning black-hole-like object, the Banados--Teitelboim--Zanelli black string, to investigate the dynamic process of wave propagation and energy transport with Alfven waves. We considered axisymmetric and stationary magnetosphere and perturbed the background magnetosphere to obtain the linear wave equation for the Alfven wave mode. The numerical results show that the energy of Alfven waves monotonically increases as the waves propagate outwardly along the rotating curved magnetic field line around the ergosphere, where energy seems not to be conserved, in the case of energy extraction from the black string by the Blandford--Znajek mechanism. The apparent breakdown of energy conservation suggests the existence of an additional wave induced by the Alfven wave. Considering the additional fast magnetosonic wave induced by the Alfven wave, the energy conservation is recovered. Similar relativistic phenomena, such as the amplification of Alfven waves and induction of fast magnetosonic waves, are expected around a spinning black hole.
Quantum electrodynamics (QED) effects may be included in physical processes of magnetar and pulsar magnetospheres with strong magnetic fields. Involving the quantum corrections, the Maxwell electrodynamics is modified to non-linear electrodynamics. In this work, we study the force-free magnetosphere in non-linear electrodynamics in a general framework. The pulsar equation describing a steady and axisymmetric magnetosphere is derived, which now admits solutions with corrections. We derive the first-order non-linear corrections to the near-zone dipole magnetosphere in some popular non-linear effective theories. The field lines of the corrected dipole tend to converge on the rotational axis so that the fields in the polar region are stronger compared to the pure dipole case.
131 - Huiquan Li , Jiancheng Wang 2017
In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived through a radial distance expansion method. From the regular conditions both at the horizon and at spatial infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial conditions at the boundaries, expanded solutions up to the first few orders are derived by solving the stream equation order by order. It is shown that our extension of the exact solution can (partially) cure the problems of the solution: it leads to magnetic domination and a mostly timelike current for restricted parameters.
The seismological dynamics of magnetars is largely determined by a strong hydro-magnetic coupling between the solid crust and the fluid core. In this paper we set up a spectral computational framework in which the magnetars motion is decomposed into a series of basis functions which are associated with the crust and core vibrational eigenmodes. A general-relativistic formalism is presented for evaluation of the core Alfven modes in the magnetic-flux coordinates, as well for eigenmode computation of a strongly magnetized crust of finite thickness. By considering coupling of the crustal modes to the continuum of Alfven modes in the core, we construct a fully relativistic dynamical model of the magnetar which allows: i) Fast and long simulations without numerical dissipation. ii) Very fine sampling of the stellar structure. We find that the presence of strong magnetic field in the crust results in localizing of some high-frequency crustal elasto-magnetic modes with the radial number n>1 to the regions of the crust where the field is nearly horizontal. While the hydro-magnetic coupling of these localized modes to the Alfven continuum in the core is reduced, their energy is drained on a time-scale much less than 1 second. Therefore the puzzle of the observed QPOs with frequencies larger than 600 Hz still stands.
4U 0142+61 is one of a small class of persistently bright magnetars. Here we report on a monitoring campaign of 4U 0142+61 from 2011 July 26 - 2016 June 12 using the Swift X-ray Telescope, continuing a 16 year timing campaign with the Rossi X-ray Timing Explorer. We show that 4U 0142+61 had two radiatively loud timing events, on 2011 July 29 and 2015 February 28, both with short soft gamma-ray bursts, and a long-lived flux decay associated with each case. We show that the 2015 timing event resulted in a net spin-down of the pulsar due to over-recovery of a glitch. We compare this timing event to previous such events in other high-magnetic-field pulsars, and discuss net spin-down glitches now seen in several young, high-B pulsars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا