Do you want to publish a course? Click here

Physical reservoir computing built by spintronic devices for temporal information processing

125   0   0.0 ( 0 )
 Added by Ronghua Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Spintronic nanodevices have ultrafast nonlinear dynamic and recurrence behaviors on a nanosecond scale that promises to enable spintronic reservoir computing (RC) system. Here two physical RC systems based on a single magnetic skyrmion memristor (MSM) and 24 spin-torque nano-oscillators (STNOs) were proposed and modeled to process image classification task and nonlinear dynamic system prediction, respectively. Based on our micromagnetic simulation results on the nonlinear responses of MSM and STNO with current pulses stimulation, the handwritten digits recognition task domesticates that an RC system using one single MSM has the outstanding performance on image classification. In addition, the complex unknown nonlinear dynamic problems can also be well solved by a physical RC system consisted of 24 STNOs confirmed in a second-order nonlinear dynamic system and NARMA10 tasks. The capability of both high accuracy and fast information processing promises to enable one type of brain-like chip based on spintronics for various artificial intelligence tasks.



rate research

Read More

Reservoir computer is a temporal information processing system that exploits an artificial or physical dissipative dynamics to learn a dynamical system generating the target time-series. This paper proposes the use of real superconducting quantum computing devices as the reservoir, where the dissipative property is served by the natural noise added to the quantum bits. The performance of this natural quantum reservoir is demonstrated in a benchmark time-series regression problem and a practical problem classifying different objects based on a temporal sensor data. In both cases the proposed reservoir computer shows a higher performance than a linear regression or classification model. The results indicate that a noisy quantum device potentially functions as a reservoir computer, and notably, the quantum noise, which is undesirable in the conventional quantum computation, can be used as a rich computation resource.
Bio-inspired hardware holds the promise of low-energy, intelligent and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for bio-medical prosthesis. However, one of the major challenges of fabricating bio-inspired hardware is building ultra-high density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bio-inspired computing include tunable fast non-linear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nano-devices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bio-inspired architectures that include one or several types of spintronic nanodevices. In this article we show how spintronics can be used for bio-inspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges towards fully integrated spintronics-CMOS (Complementary metal - oxide - semiconductor) bio-inspired hardware.
Reservoir computing is a computational framework suited for temporal/sequential data processing. It is derived from several recurrent neural network models, including echo state networks and liquid state machines. A reservoir computing system consists of a reservoir for mapping inputs into a high-dimensional space and a readout for pattern analysis from the high-dimensional states in the reservoir. The reservoir is fixed and only the readout is trained with a simple method such as linear regression and classification. Thus, the major advantage of reservoir computing compared to other recurrent neural networks is fast learning, resulting in low training cost. Another advantage is that the reservoir without adaptive updating is amenable to hardware implementation using a variety of physical systems, substrates, and devices. In fact, such physical reservoir computing has attracted increasing attention in diverse fields of research. The purpose of this review is to provide an overview of recent advances in physical reservoir computing by classifying them according to the type of the reservoir. We discuss the current issues and perspectives related to physical reservoir computing, in order to further expand its practical applications and develop next-generation machine learning systems.
This paper studies numerically how the signal detector arrangement influences the performance of reservoir computing using spin waves excited in a ferrimagnetic garnet film. This investigation is essentially important since the input information is not only conveyed but also transformed by the spin waves into high-dimensional information space when the waves propagate in the film in a spatially distributed manner. This spatiotemporal dynamics realizes a rich reservoir-computational functionality. First, we simulate spin waves in a rectangular garnet film with two input electrodes to obtain spatial distributions of the reservoir states in response to input signals, which are represented as spin vectors and used for a machine-learning waveform classification task. The detected reservoir states are combined through readout connection weights to generate a final output. We visualize the spatial distribution of the weights after training to discuss the number and positions of the output electrodes by arranging them at grid points, equiangularly circular points or at random. We evaluate the classification accuracy by changing the number of the output electrodes, and find that a high accuracy ($>$ 90%) is achieved with only several tens of output electrodes regardless of grid, circular or random arrangement. These results suggest that the spin waves possess sufficiently complex and rich dynamics for this type of tasks. Then we investigate in which area useful information is distributed more by arranging the electrodes locally on the chip. Finally, we show that this device has generalization ability for input wave-signal frequency in a certain frequency range. These results will lead to practical design of spin-wave reservoir devices for low-power intelligent computing in the near future.
This work describes preliminary steps towards nano-scale reservoir computing using quantum dots. Our research has focused on the development of an accumulator-based sensing system that reacts to changes in the environment, as well as the development of a software simulation. The investigated systems generate nonlinear responses to inputs that make them suitable for a physical implementation of a neural network. This development will enable miniaturisation of the neurons to the molecular level, leading to a range of applications including monitoring of changes in materials or structures. The system is based around the optical properties of quantum dots. The paper will report on experimental work on systems using Cadmium Selenide (CdSe) quantum dots and on the various methods to render the systems sensitive to pH, redox potential or specific ion concentration. Once the quantum dot-based systems are rendered sensitive to these triggers they can provide a distributed array that can monitor and transmit information on changes within the material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا