Do you want to publish a course? Click here

Probing the quantum phase transition in Mott insulator BaCoS_2 tuned by pressure and Ni-substitution

101   0   0.0 ( 0 )
 Added by Zurab Guguchia
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a muon spin relaxation study of the Mott transition in BaCoS_2 using two independent control parameters: (i) pressure p to tune the electronic bandwidth and (ii) Ni-substitution x on the Co site to tune the band filling. For both tuning parameters, the antiferromagnetic insulating state first transitions to an antiferromagnetic metal and finally to a paramagnetic metal without undergoing any structural phase transition. BaCoS_2 under pressure displays minimal change in the ordered magnetic moment S_ord until it collapses abruptly upon entering the antiferromagnetic metallic state at p_cr ~ 1.3 GPa. In contrast, S_ord in the Ni-doped system Ba(Co_{1-x}Ni_{x})S_{2} steadily decreases with increasing x until the antiferromagnetic metallic region is reached at x_cr ~ 0.22. In both cases, significant phase separation between magnetic and nonmagnetic regions develops when approaching p_cr or x_cr, and the antiferromagnetic metallic state is characterized by weak, random, static magnetism in a small volume fraction. No dynamical critical behavior is observed near the transition for either tuning parameter. These results demonstrate that the quantum evolution of both the bandwidth- and filling-controlled metal-insulator transition at zero temperature proceeds as a first-order transition. This behavior is common to magnetic Mott transitions in RENiO_3 and V_2O_3, which are accompanied by structural transitions without the formation of an antiferromagnetic metal phase.



rate research

Read More

The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
Calculations employing the local density approximation combined with static and dynamical mean-field theories (LDA+U and LDA+DMFT) indicate that the metal-insulator transition observed at 32 GPa in paramagnetic LaMnO3 at room temperature is not a Mott-Hubbard transition, but is caused by orbital splitting of the majority-spin eg bands. For LaMnO3 to be insulating at pressures below 32 GPa, both on-site Coulomb repulsion and Jahn-Teller distortion are needed.
122 - Y. D. Wang , W. L. Yao , Z. M. Xin 2020
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics that support a quantum spin liquid state.Here, we determine the electronic and structural properties of 1T-TaS$_2$ using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2$pi$/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS$_2$ is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS$_2$ only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the materials electronic properties.
We investigated the pressure-dependent optical response of the low-dimensional Mott-Hubbard insulator TiOBr by transmittance and reflectance measurements in the infrared and visible frequency range. A suppression of the transmittance above a critical pressure and a concomitant increase of the reflectance are observed, suggesting a pressure-induced metallization of TiOBr. The metallic phase of TiOBr at high pressure is confirmed by the presence of additional excitations extending down to the far-infrared range. The pressure-induced metallization coincides with a structural phase transition, according to the results of x-ray powder diffraction experiments under pressure.
Layered magnetic transition-metal thiophosphate NiPS3 has unique two-dimensional (2D) magnetic properties and electronic behavior. The electronic band structure and corresponding magnetic state are expected to sensitive to the interlayer interaction, which can be tuned by external pressure. Here, we report an insulator-metal transition accompanied with magnetism collapse during the 2D-3D crossover in structure induced by hydrostatic pressure. A two-stage phase transition from monoclinic (C2=m) to trigonal (P-31m) lattice is identified by ab initio simulation and confirmed by high-pressure XRD and Raman data, corresponding to a layer by layer slip mechanism along the a-axis. Temperature dependence resistance measurements and room temperature infrared spectroscopy show that the insulator-metal transition occurs near 20 GPa as well as magnetism collapse, which is further confirmed by low temperature Raman measurement and theoretical calculation. These results establish a strong correlation among the structural change, electric transport, and magnetic phase transition and expand our understandings about the layered magnetic materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا