We propose to mechanically control photon blockades (PB) in an optomechanical system with driving oscillators. We show that by tuning the mechanical driving parameters we achieve selective single-photon blockade (1PB) or two-photon blockade (2PB) as well as simultaneous 1PB and 2PB at the same frequency. This mechanical engineering of 1PB and 2PB can be understood from the anharmonic energy levels due to the modulation of the mechanical driving. In contrast to the optomechanical systems without any mechanical driving featuring PB only for specific optical detuning, our results can be useful for achieving novel photon sources with multi-frequency. Our work also opens up new route to mechanically engineer quantum states exhibiting highly nonclassical photon statistics.
We study the physical properties of double-cavity optomechanical system in which the mechanical resonator interacts with one of the coupled cavities and another cavity is used as an auxiliary cavity. The model can be expected to achieve the strong optomechanical coupling strength and overcome the optomechanical cavity decay, simultaneously. Through the coherent auxiliary cavity interferences, the steady-state squeezing of mechanical resonator can be generated in highly unresolved sideband regime. The validity of the scheme is assessed by numerical simulation and theoretical analysis of the steady-state variance of the mechanical displacement quadrature. The scheme provides a platform for the mechanical squeezing beyond the resolved sideband limit and addresses the restricted experimental bounds at present.
Photon blockade is an effective way to generate single photon, which is of great significance in quantum state preparation and quantum information processing. Here we investigate the statistical properties of photons in a double-cavity optomechanical system with nonreciprocal coupling, and explore the photon blockade in the weak and strong coupling regions respectively. To achieve the strong photon blockade, we give the optimal parameter relations under different blockade mechanisms. Moreover, we find that the photon blockades under their respective mechanisms exhibit completely different behaviors with the change of nonreciprocal coupling, and the perfect photon blockade can be achieved without an excessively large optomechanical coupling, i.e., the optomechanical coupling is much smaller than the mechanical frequency, which breaks the traditional cognition. Our proposal provides a feasible and flexible platform for the realization of single-photon source.
We investigate the routing of a single-photon in a modulated cavity optomechanical system, in which the cavity is driven by a strong coupling field, and the mechanical resonator (MR) is modulated with a weak coherent field. We show that, when there is no a weak coherent field modulating the MR, the system cannot act as a single-photon router, since the signal will be completely covered by the quantum and thermal noises. By introducing the weak coherent field, we can achieve the routing of the single-photon by adjusting the frequency of the weak coherent field, and the system can be immune to the quantum and thermal noises.
Quantum squeezing of mechanical resonator is important for studying the macroscopic quantum effects and the precision metrology of weak forces. Here we give a theoretical study of a hybrid atom-optomechanical system in which the steady-state squeezing of the mechanical resonator can be generated via the mechanical nonlinearity and cavity cooling process. The validity of the scheme is assessed by simulating the steady-state variance of the mechanical displacement quadrature numerically. The scheme is robust against dissipation of the optical cavity, and the steady-state squeezing can be effectively generated in a highly dissipative cavity.
We study the nonreciprocal transmission of a single-photon in a cavity optomechanical system, in which the cavity supports a clockwise and a counter-clockwise circulating optical modes, the mechanical resonator (MR) is excited by a weak coherent driving, and the signal photon is made up of a sequence of pulses with exactly one photon per pulse. We find that, if the input state is a single-photon state, it is insufficient to study the nonreciprocity only from the perspective of the transmission spectrums, since the frequencies where the nonreciprocity happens are far away from the peak frequency of the single-photon. So we show the nonreciprocal transmission behavior by comparing the spectrums of the input and output fields. In our system, we can achieve a transformation of the signal transmission from unidirectional isolation to unidirectional amplification in the single-photon level by changing the amplitude of the weak coherent driving. The effects of the mechanical thermal noise on the single-photon nonreciprocal transmission are also discussed.