Compositional dependence of epitaxial Tin+1SiCn MAX-phase thin films grown from a Ti3SiC2 compound target


Abstract in English

We investigate sputtering of a Ti3SiC2 compound target at temperatures ranging from RT (no applied external heating) to 970 oC as well as the influence of the sputtering power at 850 oC for the deposition of Ti3SiC2 films on Al2O3(0001) substrates. Elemental composition obtained from time-of-flight energy elastic recoil detection analysis shows an excess of carbon in all films, which is explained by differences in angular distribution between C, Si and Ti, where C scatters the least during sputtering. The oxygen content is 2.6 at.% in the film deposited at RT and decreases with increasing deposition temperature, showing that higher temperatures favor high purity films. Chemical bonding analysis by X-ray photoelectron spectroscopy shows C-Ti and Si-C bonding in the Ti3SiC2 films and Si-Si bonding in the Ti3SiC2 compound target. X-ray diffraction reveals that the phases Ti3SiC2, Ti4SiC3, and Ti7Si2C5 can be deposited from a Ti3SiC2 compound target at substrate temperatures above 850 oC and with growth of TiC and the Nowotny phase Ti5Si3Cx at lower temperatures. High-resolution scanning transmission electron microscopy shows epitaxial growth of Ti3SiC2, Ti4SiC3, and Ti7Si2C5 on TiC at 970 oC. Four-point probe resistivity measurements give values in the range 120 to 450 micro-Ohm-cm and with the lowest values obtained for films containing Ti3SiC2, Ti4SiC3, and Ti7Si2C5.

Download