Do you want to publish a course? Click here

Unconventional superconductivity in the cage type compound Sc$_5$Rh$_6$Sn$_{18}$

69   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have examined the superconducting ground state properties of the caged type compound Sc$_5$Rh$_6$Sn$_{18}$ using magnetization, heat capacity, and muon-spin relaxation or rotation ($mu$SR) measurements. Magnetization measurements indicate type-II superconductivity with an upper critical field $mu_0H_{c2}(0)$ = 7.24 T. The zero-field cooled and field cooled susceptibility measurements unveil an onset of diamagnetic signal below $T_{bf c}$ = 4.4 K. The interpretation of the heat capacity results below $T_{bf c}$ using the $alpha-$BCS model unveils the value of $alpha$ = 2.65, which gives the dimensionless ratio 2$Delta(0)/k_B T_{bf c}$ = 5.3, intimating that Sc$_5$Rh$_6$Sn$_{18}$ is a strong-coupling BCS superconductor. The zero-field $mu$SR measurements in the longitudinal geometry exhibit a signature of a spontaneous appearance of the internal magnetic field below the superconducting transition temperature, indicating that the superconducting state is characterized by the broken time-reversal symmetry (TRS). We have compared the results of broken TRS in Sc$_5$Rh$_6$Sn$_{18}$ with that observed in R$_5$Rh$_6$Sn$_{18}$ (R = Lu and Y).



rate research

Read More

432 - A. Wang , Z. Y. Nie , F. Du 2021
Evidence for broken time reversal symmetry (TRS) has been found in the superconducting states of the $R_5$Rh$_6$Sn$_{18}$ (R = Sc, Y, Lu) compounds with a centrosymmetric caged crystal structure, but the origin of this phenomenon is unresolved. Here we report neutron diffraction measurements of single crystals with $R$=Lu, as well as measurements of the temperature dependence of the magnetic penetration depth using a self-induced tunnel diode-oscillator (TDO) based technique, together with band structure calculations using density functional theory. Neutron diffraction measurements reveal that the system crystallizes in a tetragonal caged structure, and that one of nominal Lu sites in the Lu$_5$Rh$_6$Sn$_{18}$ structure is occupied by Sn, yielding a composition Lu$_{5-x}$Rh$_6$Sn$_{18+x}$ ($x=1$). The low temperature penetration depth shift $Deltalambda(T)$ exhibits an exponential temperature dependence below around $0.3T_c$, giving clear evidence for fully gapped superconductivity. The derived superfluid density is reasonably well accounted for by a single gap $s$-wave model, whereas agreement cannot be found for models of TRS breaking states with two-component order parameters. Moreover, band structure calculations reveal multiple bands crossing the Fermi level, and indicate that the aforementioned TRS breaking states would be expected to have nodes on the Fermi surface, in constrast to the observations.
106 - T. Shang , W. Xie , D. J. Gawryluk 2020
The tetragonal Mo$_5$PB$_2$ compound was recently reported to show superconductivity with a critical temperature up to 9.2 K. In search of evidence for multiple superconducting gaps in Mo$_5$PB$_2$, comprehensive measurements, including magnetic susceptibility, electrical resistivity, heat capacity, and muon-spin rotation and relaxation ($mu$SR) measurements were carried out. Data from both low-temperature superfluid density and electronic specific heat suggest a nodeless superconducting ground state in Mo$_5$PB$_2$. Two superconducting energy gaps $Delta_0$ = 1.02 meV (25%) and 1.49 meV (75%) are required to describe the low-$T$ electronic specific-heat data. The multigap features are clearly evidenced by the field dependence of the electronic specific-heat coefficient and the Gaussian relaxation rate in the superconducting state (i.e., superfluid density), as well as by the temperature dependence of the upper critical field. By combining our extensive experimental results with numerical band-structure calculations, we provide compelling evidence of multigap superconductivity in Mo$_5$PB$_2$.
We present scanning tunneling spectroscopy measurements of the local quasiparticles excitation spectra of CeCoIn$_5$ between 440mK and 3K in samples with a bulk $T_{rm c}=2.25$K. The spectral shape of our low-temperature tunneling data, quite textbook nodal-gap conductance, allow us to confidently fit the spectra with a d-wave density of states considering also a shortening of quasiparticles lifetime term $Gamma$. The $Delta(0)$ value obtained from the fits yields a BCS ratio $2Delta/kT_{rm c} =7.73$ suggesting that CeCoIn$_5$ is an unconventional superconductor in the strong coupling limit. The fits also suggest that the height of coherence peaks in CeCoIn$_5$ is reduced with respect to a pure BCS spectra and therefore the coupling of quasiparticles with spin excitations should play a relevant role. In addition, the tunneling conductance shows a depletion at energies smaller than $Delta$ for temperatures larger than the bulk $T_{rm c}$, giving further support to the existence of a pseudogap phase that in our samples span up to $T^{*}sim 1.2 T_{rm c}$. The phenomenological scaling of the pseudogap temperature observed in various families of cuprates, $2Delta/kT^{*} sim 4.3 $, is not fulfilled in our measurements. This suggests that in CeCoIn$_5$ the strong magnetic fluctuations might conspire to close the local superconducting gap at a smaller pesudogap temperature-scale than in cuprates.
123 - D. Kumar , C. N. Kuo , F. Astuti 2018
We report the single-crystal synthesis and detailed investigations of the cage-type superconductor Sc5Ru6Sn18, using powder x-ray diffraction (XRD), magnetization, specific-heat and muon-spin relaxation (muSR) measurements. Sc5Ru6Sn18 crystallizes in a tetragonal structure (space group I41/acd) with the lattice parameters a = 1.387(3) nm and c = 2.641(5) nm. Both DC and AC magnetization measurements prove the type-II superconductivity in Sc5Ru6Sn18 with Tc = 3.5(1) K, a lower critical field H_c1 (0) = 157(9) Oe and an upper critical field, H_c2 (0) = 26(1) kOe. The zero-field electronic specific-heat data are well fitted using a single-gap BCS model, with superconducting gap = 0.64(1) meV. The Sommerfeld constant varies linearly with the applied magnetic field, indicating s-wave superconductivity in Sc5Ru6Sn18. Specific-heat and transverse-field (TF) muSR measurements reveal that Sc5Ru6Sn18 is a superconductor with strong electron-phonon coupling, with TF-muSR also suggesting the single-gap s-wave character of the superconductivity. Furthermore, zero-field muSR measurements do not detect spontaneous magnetic fields below Tc, hence implying that time-reversal symmetry is preserved in Sc5Ru6Sn18.
Low-energy rattling modes and their effects on superconductivity are studied in the cage compound GaxV2Al20. A series of polycrystalline samples of 0 < x =< 0.6 are examined through resistivity, magnetic susceptibility, and heat capacity measurements. A weak-coupling BCS superconductivity is observed below Tc = 1.4-1.7 K for all the samples. For small Ga contents below 0.20, approximately 30% of the cages are occupied by rattling Al atoms having an Einstein temperature TE of 23 K, probably with most Ga atoms substituting for the cage-forming Al atoms. For higher Ga contents, approximately 0.05 Ga and 0.25-0.35 Al atoms coexist statistically inside the cages and behave as rattlers with TE ~ 8 and 23 K, respectively. A significant effect of Ga rattling on the superconductivity is clearly evidenced by the observation of a sharp rise in Tc by 8% at x = 0.20 when 0.05 Ga atoms are introduced into the case. Probably, the electron-phonon interaction is significantly enhanced by an additional contribution to the phonon density of states from the extremely low energy rattling modes of Ga atoms. In addition, a large softening of the acoustic modes is observed for x => 0.20, suggesting that the cage itself becomes anomalously soft in the presence of low-energy Ga rattling modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا