Joint Spatial and Layer Attention for Convolutional Networks


Abstract in English

In this paper, we propose a novel approach that learns to sequentially attend to different Convolutional Neural Networks (CNN) layers (i.e., ``what feature abstraction to attend to) and different spatial locations of the selected feature map (i.e., ``where) to perform the task at hand. Specifically, at each Recurrent Neural Network (RNN) step, both a CNN layer and localized spatial region within it are selected for further processing. We demonstrate the effectiveness of this approach on two computer vision tasks: (i) image-based six degree of freedom camera pose regression and (ii) indoor scene classification. Empirically, we show that combining the ``what and ``where aspects of attention improves network performance on both tasks. We evaluate our method on standard benchmarks for camera localization (Cambridge, 7-Scenes, and TUM-LSI) and for scene classification (MIT-67 Indoor Scenes). For camera localization our approach reduces the median error by 18.8% for position and 8.2% for orientation (averaged over all scenes), and for scene classification it improves the mean accuracy by 3.4% over previous methods.

Download