Do you want to publish a course? Click here

astroquery: An Astronomical Web-Querying Package in Python

67   0   0.0 ( 0 )
 Added by Adam Ginsburg
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

astroquery is a collection of tools for requesting data from databases hosted on remote servers with interfaces exposed on the internet, including those with web pages but without formal application program interfaces (APIs). These tools are built on the Python requests package, which is used to make HTTP requests, and astropy, which provides most of the data parsing functionality. astroquery modules generally attempt to replicate the web page interface provided by a given service as closely as possible, making the transition from browser-based to command-line interaction easy. astroquery has received significant contributions from throughout the astronomical community, including several significant contributions from telescope archives. astroquery enables the creation of fully reproducible workflows from data acquisition through publication. This paper describes the philosophy, basic structure, and development model of the astroquery package. The complete documentation for astroquery can be found at http://astroquery.readthedocs.io/.



rate research

Read More

We present astroplan - an open source, open development, Astropy affiliated package for ground-based observation planning and scheduling in Python. astroplan is designed to provide efficient access to common observational quantities such as celestial rise, set, and meridian transit times and simple transformations from sky coordinates to altitude-azimuth coordinates without requiring a detailed understanding of astropys implementation of coordinate systems. astroplan provides convenience functions to generate common observational plots such as airmass and parallactic angle as a function of time, along with basic sky (finder) charts. Users can determine whether or not a target is observable given a variety of observing constraints, such as airmass limits, time ranges, Moon illumination/separation ranges, and more. A selection of observation schedulers are included which divide observing time among a list of targets, given observing constraints on those targets. Contributions to the source code from the community are welcome.
44 - Matthew Pitkin 2018
This Python module provides an interface for querying the Australia Telescope National Facility (ATNF) pulsar catalogue (Manchester et al. 2005). The intended users are astronomers wanting to extract data from the catalogue through a script rather than having to download and parse text tables output using the standard web interface. It allows users to access information, such as pulsar frequencies and sky locations, on all pulsars in the catalogue. Querying of the catalogue can easily be incorporated into Python scripts.
Fermipy is an open-source python framework that facilitates analysis of data collected by the Fermi Large Area Telescope (LAT). Fermipy is built on the Fermi Science Tools, the publicly available software suite provided by NASA for the LAT mission. Fermipy provides a high-level interface for analyzing LAT data in a simple and reproducible way. The current feature set includes methods for extracting spectral energy distributions and lightcurves, generating test statistic maps, finding new source candidates, and fitting source position and extension. Fermipy leverages functionality from other scientific python packages including NumPy, SciPy, Matplotlib, and Astropy and is organized as a community-developed package following an open-source development model. We review the current functionality of Fermipy and plans for future development.
We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity
textsc{Pykat} is a Python package which extends the popular optical interferometer modelling software textsc{Finesse}. It provides a more modern and efficient user interface for conducting complex numerical simulations, as well as enabling the use of Pythons extensive scientific software ecosystem. In this paper we highlight the relationship between textsc{Pykat} and textsc{Finesse}, how it is used, and provide an illustrative example of how it has helped to better understand the characteristics of the current generation of gravitational wave interferometers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا