Do you want to publish a course? Click here

Reference-free evaluation of thin films mass thickness and composition through energy dispersive x-ray spectroscopy

63   0   0.0 ( 0 )
 Added by David Dellasega PhD
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we report the development of a new method for the evaluation of thin films mass thickness and composition based on the Energy Dispersive X-Ray Spectroscopy (EDS). The method exploits the theoretical calculation of the in-depth characteristic X-ray generation distribution function, $phi$/($rho$ z), in multilayer samples, obtained by the numerical solution of the electron transport equation, to achieve reliable measurements without the need of a reference sample and multiple voltages acquisitions. The electron transport model is derived from the Boltzmann transport equation and it exploits the most updated and reliable physical parameters in order to obtain an accurate description of the phenomenon. The method for the calculation of film mass thickness and composition is validated with benchmarks from standard techniques. In addition, a model uncertainty and sensitivity analysis is carried out and it indicates that the mass thickness accuracy is in the order of 10 $mu$g/cm$^2$, which is comparable to the nuclear standard techniques resolution. We show the technique peculiarities in one example measurement: two-dimensional mass thickness and composition profiles are obtained for a ultra-low density, high roughness, nanostructured film.

rate research

Read More

106 - M. Paul , A. Mueller , A. Ruff 2009
Magnetite (Fe3O4) thin films on GaAs have been studied with HArd X-ray PhotoElectron Spectroscopy (HAXPES) and low-energy electron diffraction. Films prepared under different growth conditions are compared with respect to stoichiometry, oxidation, and chemical nature. Employing the considerably enhanced probing depth of HAXPES as compared to conventional x-ray photoelectron spectroscopy (XPS) allows us to investigate the chemical state of the film-substrate interfaces. The degree of oxidation and intermixing at the interface are dependent on the applied growth conditions; in particular, we found that metallic Fe, As2O3, and Ga2O3 exist at the interface. These interface phases might be detrimental for spin injection from magnetite into GaAs.
Among the magnetostrictive alloys the one formed of iron and gallium (called Galfenol from its U.S. Office of Naval Research discoverers in the late 90s) is attractive for its low hysteresis, good tensile stress, good machinability and its rare-earth free composition. One of its applications is its association with a piezoelectric material to form a extrinsic multiferroic composite as an alternative to the rare room temperature intrinsic multiferroics such as BiFeO$_3$. This study focuses on thin Fe$_{0.81}$Ga$_{0.19}$ films of thickness 5, 10, 20 and 60 nm deposited by sputtering onto glass substrates. Magnetization reversal study reveals a well-defined symmetry with two principal directions independent of the thickness. The magnetic signature of this magnetic anisotropy decreases with increasing FeGa thickness due to an increase of the non-preferential polycrystalline arrangement, as revealed by transmission electron microscopy (TEM) observations. Thus when magnetic field is applied along these specific directions, magnetization reversal is mainly coherent for the thinnest sample as seen from the transverse magnetization cycles. Magnetostriction coefficient reaches 20 ppm for the 5 nm film and decreases for thicker samples, where polycrystalline part with non-preferential orientation prevails.
Transition metal oxides have long been an area of interest for water electrocatalysis through the oxygen evolution and oxygen reduction reactions. Iron oxides, such as LaFeO$_{3}$, are particularly promising due to the favorable energy alignment of the valence and conduction bands comprised of Fe$^{3+}$ cations and the visible light band gap of such materials. In this work, we examine the role of band alignment on the electrocatalytic oxygen evolution reaction (OER) in the intrinsic semiconductor LaFeO$_{3}$ by growing epitaxial films of varying thicknesses on Nb-doped SrTiO$_{3}$. Using cyclic voltammetry and electrochemical impedance spectroscopy, we find that there is a strong thickness dependence on the efficiency of electrocatalysis for OER. These measurements are understood based on interfacial band alignment in the system as confirmed by layer-resolved electron energy loss spectroscopy and electrochemical Mott-Schottky measurements. Our results demonstrate the importance of band engineering for the rational design of thin film electrocatalysts for renewable energy sources.
We report on the thin film resistivity of several platinum-group metals (Ru, Pd, Ir, Pt). Platinum-group thin films show comparable or lower resistivities than Cu for film thicknesses below about 5,nm due to a weaker thickness dependence of the resistivity. Based on experimentally determined mean linear distances between grain boundaries as well as ab initio calculations of the electron mean free path, the data for Ru, Ir, and Cu were modeled within the semiclassical Mayadas--Shatzkes model [Phys. Rev. B 1, 1382 (1970)] to assess the combined contributions of surface and grain boundary scattering to the resistivity. For Ru, the modeling results indicated that surface scattering was strongly dependent on the surrounding material with nearly specular scattering at interfaces with SiO2 or air but with diffuse scattering at interfaces with TaN. The dependence of the thin film resistivity on the mean free path is also discussed within the Mayadas--Shatzkes model in consideration of the experimental findings.
With high quality topological insulator (TI) Bi2Se3 thin films, we report thickness-independent transport properties over wide thickness ranges. Conductance remained nominally constant as the sample thickness changed from 256 to ~8 QL (QL: quintuple layer, 1 QL = ~1 nm). Two surface channels of very different behaviors were identified. The sheet carrier density of one channel remained constant at ~3.0 x 10^13 cm^-2 down to 2 QL, while the other, which exhibited quantum oscillations, remained constant at ~8 x 10^12 cm^-2 only down to ~8 QL. The weak antilocalization parameters also exhibited similar thickness-independence. These two channels are most consistent with the topological surface states and the surface accumulation layers, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا