Do you want to publish a course? Click here

Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

65   0   0.0 ( 0 )
 Added by Katherine Mesick
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutron and gamma-ray spectroscopy (NGRS) is a well established technique for studying the geochemical composition and volatile abundance relevant to planetary structure and evolution of planetary bodies. Previous NGRS instruments have used separate gamma-ray and neutron spectrometers. The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) instrument is an innovative and fully integrated NGRS with low resource requirements. EPICS utilizes elpasolite scintillator read out by silicon photomultipliers to combine the gamma-ray and neutron spectrometer into a single instrument, leading to a significant reduction in instrument size, weight, and power. An overview and motivation for the EPICS instrument, current status of the EPICS development, and a discussion of the expected sensitivity and performance are presented.



rate research

Read More

Recent progress on the development of very low noise high purity germanium ionization spectrometers has produced an instrument of 1.2 kg mass and excellent noise performance. The detector was installed in a low-background cryostat intended for use in a direct detection search for low mass, WIMP dark matter. This Transaction reports the thermal characterization of the cryostat, specifications of the newly prepared 1.2 kg p-type point contact germanium detector, and the spectroscopic performance of the integrated system. The integrated detector and low background cryostat achieved full-width-at-half-maximum noise performance of 98 eV for an electronic pulse generator peak and 1.9 keV for the 1332 keV Co-60 gamma ray.
We present the development of a segmented fast neutron spectrometer (FaNS-2) based upon plastic scintillator and $^3$He proportional counters. It was designed to measure both the flux and spectrum of fast neutrons in the energy range of few MeV to 1 GeV. FaNS-2 utilizes capture-gated spectroscopy to identify neutron events and reject backgrounds. Neutrons deposit energy in the plastic scintillator before capturing on a $^3$He nucleus in the proportional counters. Segmentation improves neutron energy reconstruction while the large volume of scintillator increases sensitivity to low neutron fluxes. A main goal of its design is to study comparatively low neutron fluxes, such as cosmogenic neutrons at the Earths surface, in an underground environment, or from low-activity neutron sources. In this paper, we present details of its design and construction as well as its characterization with a calibrated $^{252}$Cf source and monoenergetic neutron fields of 2.5 MeV and 14 MeV. Detected monoenergetic neutron spectra are unfolded using a Singular Value Decomposition method, demonstrating a 5% energy resolution at 14 MeV. Finally, we discuss plans for measuring the surface and underground cosmogenic neutron spectra with FaNS-2.
A compact liquid organic neutron spectrometer (CLONS) based on a single NE213 liquid scintillator (5 cm diam. x 5 cm) is described. The spectrometer is designed to measure neutron fluence spectra over the energy range 2-200 MeV and is suitable for use in neutron fields having any type of time structure. Neutron fluence spectra are obtained from measurements of two-parameter distributions (counts versus pulse height and pulse shape) using the Bayesian unfolding code MAXED. Calibration and test measurements made using a pulsed neutron beam with a continuous energy spectrum are described and the application of the spectrometer to radiation dose measurements is discussed.
201 - M. Osipenko , M. Ripani , G. Ricco 2015
In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$times 10^{-4}$ to 3.5$times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.
A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulseshape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا