No Arabic abstract
Collective charge excitations in solids have been the subject of intense research ever since the pioneering works of Bohm and Pines in the 1950s. Most of these studies focused on long-wavelength plasmons that involve charge excitations with a small crystal-momentum transfer, $q ll G$, where $G$ is the wavenumber of a reciprocal lattice vector. Less emphasis was given to collective charge excitations that lead to shortwave plasmons in multivalley electronic systems (i.e., when $q sim G$). We present a theory of intervalley plasmons, taking into account local-field effects in the dynamical dielectric function. Focusing on monolayer transition-metal dichalcogenides where each of the valleys is further spin-split, we derive the energy dispersion of these plasmons and their interaction with external charges. Emphasis in this work is given to sum rules from which we derive the interaction between intervalley plasmons and a test charge, as well as a compact single-plasmon pole expression for the dynamical Coulomb potential.
We investigate in a fully quantum-mechanical manner how the many-body excitation spectrum of topological insulators is affected by the presence of long-range Coulomb interactions. In the one-dimensional Su-Schrieffer-Heeger model and its mirror-symmetric variant strongly localized plasmonic excitations are observed which originate from topologically non-trivial single-particle states. These textit{topological plasmons} inherit some of the characteristics of their constituent topological single-particle states, but they are not equally well protected against disorder due to the admixture of non-topological bulk single-particle states in the polarization function. The strength of the effective Coulomb interactions is also shown to have strong effects on the plasmonic modes. Furthermore, we show how external modifications via dielectric screening and applied electric fields with distinct symmetries can be used to study topological plasmons, thus allowing for experimental verification of our atomistic predictions.
Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe$_2$ and WS$_2$ have shown that while the low-temperature photoluminescence from neutral excitons and three-body complexes is suppressed in the presence of elevated electron densities or strong photoexcitation, new dominant peaks emerge in the low-energy side of the spectrum. I present a theory that elucidates the nature of these optical transitions showing the role of the intervalley Coulomb interaction. After deriving a compact dynamical form for the Coulomb potential, I calculate the self-energy of electrons due to their interaction with this potential. For electrons in the upper valleys of the spin-split conduction band, the self energy includes a moderate redshift due to exchange, and most importantly, a correlation-induced virtual state in the band-gap. The latter sheds light on the origin of the luminescence in monolayer WSe$_2$ and WS$_2$ in the presence of pronounced many-body interactions.
Single layers of MoS2 and MoSe2 were optically pumped with circularly polarized light and an appreciable polarization was initialized as the pump energy was varied. The circular polarization of the emitted photoluminescence was monitored as function of the difference between the excitation energy and the A-exciton emission at the K-point of the Brillouin zone. Our results show a threshold of twice the LA phonon energy, specific to the material, above which phonon-assisted intervalley scattering causes depolarization. In both materials this lead to almost complete depolarization within ~100 meV above the threshold energy. We identify the extra kinetic energy of the exciton (independent of whether it is neutral or charged) as the key parameter for presenting a unifying picture of the depolarization process.
Plasmon opens up the possibility to efficiently couple light and matter at sub-wavelength scales. In general, the plasmon frequency is dependent of carrier density. This dependency, however, renders fundamentally a weak plasmon intensity at low frequency, especially for Dirac plasmon (DP) widely studied in graphene. Here we demonstrate a new type of DP, excited by a Dirac nodal-surface state, which exhibits an anomalously density-independent frequency. Remarkably, we predict realization of anomalous DP (ADP) in 1D topological electrides, such as Ba3CrN3 and Sr3CrN3, by first-principles calculations. The ADPs in both systems have a density-independent frequency and high intensity, and their frequency can be tuned from terahertz to mid-infrared by changing the excitation direction. Furthermore, the intrinsic weak electron-phonon coupling of anionic electrons in electrides affords an added advantage of ultra-low phonon-assisted damping and hence a long lifetime of the ADPs. Our work paves the way to developing novel plasmonic and optoelectronic devices by combining topological physics with electride materials.
Black phosphorus presents a very anisotropic crystal structure, making it a potential candidate for hyperbolic plasmonics, characterized by a permittivity tensor where one of the principal components is metallic and the other dielectric. Here we demonstrate that atomically thin black phosphorus can be engineered to be a hyperbolic material operating in a broad range of the electromagnetic spectrum from the entire visible spectrum to ultraviolet. With the introduction of an optical gain, a new hyperbolic region emerges in the infrared. The character of this hyperbolic plasmon depends on the interplay between gain and loss along the two crystalline directions.