Do you want to publish a course? Click here

McShane identities for Higher Teichmuller theory and the Goncharov-Shen potential

126   0   0.0 ( 0 )
 Added by Zhe Sun
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We derive generalizations of McShanes identity for higher ranked surface group representations by studying a family of mapping class group invariant functions introduced by Goncharov and Shen which generalize the notion of horocycle lengths. In particular, we obtain McShane-type identities for finite-area cusped convex real projective surfaces by generalizing the Birman--Series geodesic scarcity theorem. More generally, we establish McShane-type identities for positive surface group representations with loxodromic boundary monodromy, as well as McShane-type inequalities for general rank positive representations with unipotent boundary monodromy. Our identities are systematically expressed in terms of projective invariants, and we study these invariants: we establish boundedness and Fuchsian rigidity results for triple and cross ratios. We apply our identities to derive the simple spectral discreteness of unipotent-bordered positive representations, collar lemmas, and generalizations of the Thurston metric.



rate research

Read More

66 - Anna Wienhard 2018
The goal of this article is to invite the reader to get to know and to get involved into higher Teichmuller theory by describing some of its many facets.
We introduce $Theta$-positivity, a new notion of positivity in real semisimple Lie groups. The notion of $Theta$-positivity generalizes at the same time Lusztigs total positivity in split real Lie groups as well as well known concepts of positivity in Lie groups of Hermitian type. We show that there are two other families of Lie groups, SO(p,q) for p<q, and a family of exceptional Lie groups, which admit a $Theta$-positive structure. We describe key aspects of $Theta$-positivity and make a connection with representations of surface groups and higher Teichmuller theory.
We introduce a new class of $mathfrak{sl}_2$-triples in a complex simple Lie algebra $mathfrak{g}$, which we call magical. Such an $mathfrak{sl}_2$-triple canonically defines a real form and various decompositions of $mathfrak{g}$. Using this decomposition data, we explicitly parameterize special connected components of the moduli space of Higgs bundles on a compact Riemann surface $X$ for an associated real Lie group, hence also of the corresponding character variety of representations of $pi_1X$ in the associated real Lie group. This recovers known components when the real group is split, Hermitian of tube type, or $mathrm{SO}_{p,q}$ with $1<pleq q$, and also constructs previously unknown components for the quaternionic real forms of $mathrm{E}_6$, $mathrm{E}_7$, $mathrm{E}_8$ and $mathrm{F}_4$. The classification of magical $mathfrak{sl}_2$-triples is shown to be in bijection with the set of $Theta$-positive structures in the sense of Guichard--Wienhard, thus the mentioned parameterization conjecturally detects all examples of higher Teichmuller spaces. Indeed, we discuss properties of the surface group representations obtained from these Higgs bundle components and their relation to $Theta$-positive Anosov representations, which indicate that this conjecture holds.
117 - Hugo Parlier 2020
The lengths of geodesics on hyperbolic surfaces satisfy intriguing equations, known as identities, relating these lengths to geometric quantities of the surface. This paper is about a large family of identities that relate lengths of closed geodesics and orthogeodesics to boundary lengths or number of cusps. These include, as particular cases, identities due to Basmajian, to McShane and to Mirzakhani and Tan-Wong-Zhang. In stark contrast to previous identities, the identities presented here include the lengths taken among all closed geodesics.
Some connected components of a moduli space are mundane in the sense that they are distinguished only by obvious topological invariants or have no special characteristics. Others are more alluring and unusual either because they are not detected by primary invariants, or because they have special geometric significance, or both. In this paper we describe new examples of such `exotic components in moduli spaces of SO(p,q)-Higgs bundles on closed Riemann surfaces or, equivalently, moduli spaces of surface group representations into the Lie group SO(p,q). Furthermore, we discuss how these exotic components are related to the notion of positive Anosov representations recently developed by Guichard and Wienhard. We also provide a complete count of the connected components of these moduli spaces (except for SO(2,q), with q> 3).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا