Do you want to publish a course? Click here

Non-topological Origin of the Planar Hall Effect in Type-II Dirac Semimetal NiTe2

75   0   0.0 ( 0 )
 Added by Fengqi Song
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dirac and Weyl semimetals are new discovered topological nontrivial materials with the linear band dispersions around the Dirac/Weyl points. When applying non-orthogonal electric current and magnetic field, an exotic phenomenon called chiral anomaly arises and negative longitudinal resistance can be detected. Recently, a new phenomenon named planer Hall effect (PHE) is considered to be another indication of chiral anomaly which has been observed in many topological semimetals. However, it still remains a question that is the PHE only attributed to chiral anomaly? Here we demonstrate the PHE in a new-discovered type-II Dirac semimetal NiTe2 by low temperature transport. However, after detailed analysis, we conclude that the PHE results from the trivial orbital magnetoresistance. This work reveals that PHE is not a sufficient condition of chiral anomaly and one need to take special care of other non-topological contribution in such studies.



rate research

Read More

We report experimental observation of the Planar Hall effect (PHE) in a type-II Dirac semimetal PtTe$_2$. This unusual Hall effect is not expected in nonmagnetc materials such as PtTe$_2$, and has been observed previously mostly in magnetic semiconductors or metals. Remarkably, the PHE in PtTe$_2$ can be observed up to temperatures near room temperature which indicates the robustness of the effect. This is in contrast to the chiral anomaly induced negative longitudnal magnetoresistance (LMR), which can be observed only in the low temperature regime and is sensitive to extrinsic effects, such as current jetting and chemical inhomogeneities in crystals of high mobility. Planar Hall effect on the other hand is a purely intrinsic effect generated by the Berry curvature in Weyl semimetals. Additionally, the PHE is observed for PtTe$_2$ even though the Dirac node is $approx 0.8$~eV away from the Fermi level. Thus our results strongly indicate that PHE can be used as a crucial transport diagnostic for topological character even for band structures with Dirac nodes slightly away from the Fermi energy.
The study of electronic properties in topological systems is one of the most fascinating topics in condensed matter physics, which has generated enormous interests in recent times. New materials are frequently being proposed and investigated to identify their non-trivial band structure. While sophisticated techniques such as angle-resolved photoemission spectroscopy have become popular to map the energy-momentum relation, the transport experiments lack any direct confirmation of Dirac and Weyl fermions in a system. From band structure calculations, VAl$_{3}$ has been proposed to be a type II topological Dirac semimetal. This material represents a large family of isostructural compounds, all having similar electronic band structure and is an ideal system to explore the rich physics of Lorentz symmetry violating Dirac fermions. In this work, we present a detailed analysis on the magnetotransport properties of VAl$_{3}$. A large, non-saturating magnetoresistance has been observed. Hall resistivity reveals the presence of two types of charge carriers with high mobility. Our measurements show a large planar Hall effect in this material, which is robust and can be easily detectable up to high temperature. This phenomenon originates from the relativistic chiral anomaly and non-trivial Berry curvature, which validates the theoretical prediction of the Dirac semimetal phase in VAl$_{3}$.
257 - Tao Li , Ke Wang , Chunqiang Xu 2019
Very recently, NiTe2 has been reported to be a type II Dirac semimetal with Dirac nodes near the Fermi surface. Furthermore, it is unveiled that NiTe2 presents the Hall Effect, which is ascribed to orbital magnetoresistance. The physical properties behavior of NiTe2 under high pressure attracts us. In this paper, we investigate the electrical properties of polycrystalline NiTe2 by application of pressure ranging from 3.4GPa to 54.45Gpa. Superconductivity emerges at critical pressure 12GPa with a transition temperature of 3.7K, and Tc reaches its maximum, 6.4 K, at the pressure of 52.8GPa. Comparing with the superconductivity in MoP, we purposed the possibility of topological superconductivity in NiTe2. Two superconductivity transitions are observed with pressure increasing in single crystal.
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tuning the Fermi levels of both top and bottom surfaces across the Dirac point by electrostatic gating. This opened the window for studying the spin-nondegenerate Dirac physics peculiar to TIs. Here we report our discovery of a novel planar Hall effect (PHE) from the TI surface, which results from a hitherto-unknown resistivity anisotropy induced by an in-plane magnetic field. This effect is observed in dual-gated devices of bulk-insulating Bi$_{2-x}$Sb$_{x}$Te$_{3}$ thin films, in which both top and bottom surfaces are gated. The origin of PHE is the peculiar time-reversal-breaking effect of an in-plane magnetic field, which anisotropically lifts the protection of surface Dirac fermions from back-scattering. The key signature of the field-induced anisotropy is a strong dependence on the gate voltage with a characteristic two-peak structure near the Dirac point which is explained theoretically using a self-consistent T-matrix approximation. The observed PHE provides a new tool to analyze and manipulate the topological protection of the TI surface in future experiments.
Anisotropic magnetoresistance is the change tendency of resistance of a material on the mutual orientation of the electric current and the external magnetic field. Here, we report experimental observations in the Dirac semimetal Cd3As2 of giant anisotropic magnetoresistance and its transverse version, called the planar Hall effect. The relative anisotropic magnetoresistance is negative and up to -68% at 2 K and 10 T. The high anisotropy and the minus sign in this isotropic and nonmagnetic material are attributed to a field-dependent current along the magnetic field, which may be induced by the Berry curvature of the band structure. This observation not only reveals unusual physical phenomena in Weyl and Dirac semimetals, but also finds additional transport signatures of Weyl and Dirac fermions other than negative magnetoresistance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا