No Arabic abstract
The mechanisms producing fast variability of the $gamma$-ray emission in active galactic nuclei are under debate. The MAGIC telescopes detected a fast very high energy (VHE, E$>100$ GeV) $gamma$-ray flare from BL Lacertae on 2015 June 15. The flare had a maximum flux of $(1.5pm 0.3)times 10^{-10}$ photons cm$^{-2}$ s$^{-1}$ and halving time of $26pm8$ minutes. The MAGIC observations were triggered by a high state in the optical and high energy (HE, E$>100$ MeV) $gamma$-ray bands. In this paper we present the MAGIC VHE $gamma$-ray data together with multiwavelength data from radio, optical, X-rays, and HE $gamma$ rays from 2015 May 1 to July 31. Well-sampled multiwavelength data allow us to study the variability in detail and compare it to the other epochs when fast VHE $gamma$-ray flares have been detected from this source. Interestingly, we find that the behaviour in radio, optical, X-rays and HE $gamma$-rays is very similar to two other observed VHE $gamma$-ray flares. In particular, also during this flare there was an indication of rotation of the optical polarization angle and of activity at the 43,GHz core. These repeating patterns indicate a connection between the three events. We also test modelling of the spectral energy distribution, based on constraints from the light curves and VLBA observations, with two different geometrical setups of two-zone inverse Compton models. In addition we model the $gamma$-ray data with the star-jet interaction model. We find that all of the tested emission models are compatible with the fast VHE $gamma$-ray flare, but all have some tension with the multiwavelength observations.
Combined with very-long-baseline interferometry measurements, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL~Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL~Lacertae observed by VERITAS, with a rise time of $sim$2.3~hr and a decay time of $sim$36~min. The peak flux above 200 GeV is $(4.2 pm 0.6) times 10^{-6} ;text{photon} ;text{m}^{-2}; text{s}^{-1}$ measured with a 4-minute-binned light curve, corresponding to $sim$180% of the flux which is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in VLBA observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models which invoke relativistic plasma passing stationary shocks.
Observations of fast TeV $gamma$-ray flares from blazars reveal the extreme compactness of emitting regions in blazar jets. Combined with very-long-baseline radio interferometry measurements, they probe the structure and emission mechanism of the jet. We report on a fast TeV $gamma$-ray flare from BL Lacertae observed by VERITAS, with a rise time of about 2.3 hours and a decay time of about 36 minutes. The peak flux at $>$200 GeV measured with the 4-minute binned light curve is $(4.2 pm 0.6) times 10^{-6} ;text{photons} ;text{m}^{-2}, text{s}^{-1}$, or $sim$180% the Crab Nebula flux. Variability in GeV $gamma$-ray, X-ray, and optical flux, as well as in optical and radio polarization was observed around the time of the TeV $gamma$-ray flare. A possible superluminal knot was identified in the VLBA observations at 43 GHz. The flare constrains the size of the emitting region, and is consistent with several theoretical models with stationary shocks.
Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the VHE (very-high-energy, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods. We performed VHE gamma-ray observations of PKS 1510-089 with the MAGIC telescopes during a long high gamma-ray state in May 2015. In order to perform broadband modelling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results. PKS 1510-089 has been detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, due to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to the ones obtained during previous measurements of the source. The observed flux variability sets for the first time constraints on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.
We report on Fermi/Large Area Telescope observations of the accreting black hole low-mass X-ray binary V404 Cygni during its outburst in June-July 2015. Detailed analyses reveal a possible excess of $gamma$-ray emission on 26 June 2015, with a very soft spectrum above $100$ MeV, at a position consistent with the direction of V404 Cyg (within the $95%$ confidence region and a chance probability of $4 times 10^{-4}$). This emission cannot be associated with any previously-known Fermi source. Its temporal coincidence with the brightest radio and hard X-ray flare in the lightcurve of V404 Cyg, at the end of the main active phase of its outburst, strengthens the association with V404 Cyg. If the $gamma$-ray emission is associated with V404 Cyg, the simultaneous detection of $511,$keV annihilation emission by INTEGRAL requires that the high-energy $gamma$ rays originate away from the corona, possibly in a Blandford-Znajek jet. The data give support to models involving a magnetically-arrested disk where a bright $gamma$-ray jet can re-form after the occurrence of a major transient ejection seen in the radio.
The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected during 2007 - 2008 in VHE (very high energy: E > 100 GeV) gamma-rays with the VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An excess of 1791 events is detected, corresponding to a significance of 21.2 standard deviations (sigma), in these observations (32.8 hours live time). The observed integral flux above 200 GeV is 6% of the Crab Nebulas flux and shows evidence for variability on the time-scale of days. The measured energy spectrum is characterized by a soft power law with photon index Gamma = 4.1 +- 0.4_stat +- 0.6_sys. The radio galaxy 3C 66B is excluded as a possible source of the VHE emission.