Do you want to publish a course? Click here

Instability of unidirectional flows for the 2D $alpha$-Euler equations

166   0   0.0 ( 0 )
 Added by Shibi Vasudevan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study stability of unidirectional flows for the linearized 2D $alpha$-Euler equations on the torus. The unidirectional flows are steady states whose vorticity is given by Fourier modes corresponding to a vector $mathbf p in mathbb Z^{2}$. We linearize the $alpha$-Euler equation and write the linearized operator $L_{B} $ in $ell^{2}(mathbb Z^{2})$ as a direct sum of one-dimensional difference operators $L_{B,mathbf q}$ in $ell^{2}(mathbb Z)$ parametrized by some vectors $mathbf qinmathbb Z^2$ such that the set ${mathbf q +n mathbf p:n in mathbb Z}$ covers the entire grid $mathbb Z^{2}$. The set ${mathbf q +n mathbf p:n in mathbb Z}$ can have zero, one, or two points inside the disk of radius $|mathbf p|$. We consider the case where the set ${mathbf q +n mathbf p:n in mathbb Z}$ has exactly one point in the open disc of radius $mathbf p$. We show that unidirectional flows that satisfy this condition are linearly unstable. Our main result is an instability theorem that provides a necessary and sufficient condition for the existence of a positive eigenvalue to the operator $L_{B,mathbf q}$ in terms of equations involving certain continued fractions. Moreover, we are also able to provide a complete characterization of the corresponding eigenvector. The proof is based on the use of continued fractions techniques expanding upon the ideas of Friedlander and Howard.



rate research

Read More

We investigate the dependence of the $L^1to L^infty$ dispersive estimates for one-dimensional radial Schro-din-ger operators on boundary conditions at $0$. In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the dispersive decay estimates if the angular momentum is positive, $lin (0,1/2)$. However, for nonpositive angular momenta, $lin (-1/2,0]$, the standard $O(|t|^{-1/2})$ decay remains true for all self-adjoint realizations.
We derive analogues of the classical Rayleigh, Fjortoft and Arnold stability and instability theorems in the context of the 2D $alpha$-Euler equations.
We derive a dispersion estimate for one-dimensional perturbed radial Schrodinger operators where the angular momentum takes the critical value $l=-frac{1}{2}$. We also derive several new estimates for solutions of the underlying differential equation and investigate the behavior of the Jost function near the edge of the continuous spectrum.
We consider a 2D Pauli operator with almost periodic field $b$ and electric potential $V$. First, we study the ergodic properties of $H$ and show, in particular, that its discrete spectrum is empty if there exists an almost periodic magnetic potential which generates the magnetic field $b - b_{0}$, $b_{0}$ being the mean value of $b$. Next, we assume that $V = 0$, and investigate the zero modes of $H$. As expected, if $b_{0} eq 0$, then generically $operatorname{dim} operatorname{Ker} H = infty$. If $b_{0} = 0$, then for each $m in {mathbb N} cup { infty }$, we construct almost periodic $b$ such that $operatorname{dim} operatorname{Ker} H = m$. This construction depends strongly on results concerning the asymptotic behavior of Dirichlet series, also obtained in the present article.
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا