Do you want to publish a course? Click here

The imprint of clump formation at high redshift. I. A disc alpha-abundance dichotomy

70   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The disc structure of the Milky Way is marked by a chemical dichotomy, with high-alpha and low-alpha abundance sequences, traditionally identified with the geometric thick and thin discs. This identification is aided by the old ages of the high-alpha stars, and lower average ages of the low-alpha ones. Recent large scale surveys such as APOGEE have provided a wealth of data on this chemical structure, including showing that an identification of chemical and geometric thick discs is not exact, but the origin of the chemical dichotomy has remained unclear. Here we demonstrate that a dichotomy arises naturally if the early gas-rich disc fragments, leading to some fraction of the star formation occurring in clumps of the type observed in high-redshift galaxies. These clumps have high star formation rate density. They, therefore, enrich rapidly, moving from the low-alpha to the high-alpha sequence, while more distributed star formation produces the low-alpha sequence. We demonstrate that this model produces a chemically-defined thick disc that has many of the properties of the Milky Ways thick disc. Because clump formation is common in high redshift galaxies, we predict that chemical bimodalities are common in massive galaxies.



rate research

Read More

We extend our previous work on the age-chemical abundance structure of the Galactic outer disc to the inner disc (4 < r < 8 kpc) based on the SDSS/APOGEE survey. Different from the outer disc, the inner disc stars exhibit a clear bimodal distribution in the [Mg/Fe]-[Fe/H] plane. While a number of scenarios have been proposed in the literature, it remains challenging to recover this bimodal distribution with theoretical models. To this end, we present a chemical evolution model embedding a complex multi-phase inner disc formation scenario that matches the observed bimodal [Mg/Fe]-[Fe/H] distribution. In this scenario, the formation of the inner disc is dominated by two main starburst episodes 6 Gyr apart with secular, low-level star formation activity in between. In our model, the first starburst occurs at early cosmic times (t~1 Gyr) and the second one 6 Gyr later at a cosmic time of t~7 Gyr. Both these starburst episodes are associated with gas accretion events in our model, and are quenched rapidly. The first starburst leads to the formation of the high-$alpha$ sequence, and the second starburst leads to the formation of the metal-poor low-$alpha$ sequence. The metal-rich low-$alpha$ stars, instead, form during the secular evolution phase between the two bursts. Our model shows that the $alpha$-dichotomy originates from the rapid suppression of star formation after the first starburst. The two starburst episodes are likely to be responsible for the formation of the geometric thick disc (z >1 kpc), with the old inner thick disc and the young outer thick disc forming during the first and the second starbursts, respectively.
128 - D. Kawata 2017
We have developed a novel Markov Chain Mote Carlo (MCMC) chemical painting technique to explore possible radial and vertical metallicity gradients for the thick disc progenitor. In our analysis we match an N-body simulation to the data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. We assume that the thick disc has a constant scale-height and has completed its formation at an early epoch, after which time radial mixing of its stars has taken place. Under these assumptions, we find that the initial radial metallicity gradient of the thick disc progenitor should not be negative, but either flat or even positive, to explain the current negative vertical metallicity gradient of the thick disc. Our study suggests that the thick disc was built-up in an inside-out and upside-down fashion, and older, smaller and thicker populations are more metal poor. In this case, star forming discs at different epochs of the thick disc formation are allowed to have different radial metallicity gradients, including a negative one, which helps to explain a variety of slopes observed in high redshift disc galaxies. This scenario helps to explain the positive slope of the metallicity-rotation velocity relation observed for the Galactic thick disc. On the other hand, radial mixing flattens the slope of an existing gradient.
We derive the luminosity function of high-redshift Lyman alpha emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near 9 clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5<z<6.7. Eleven emission-line candidates were located in the range 2.2<z<5.6 whose identification we justify as Lyman alpha, in most cases via further spectroscopic observations. The selection function we constructed for our survey takes into account our varying intrinsic Lyman alpha line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyman alpha luminosity function to unprecedented limits of 10^40 erg/s, corresponding to a star-formation rate of 0.01 Msun/yr. Our cumulative z=5 Lyman alpha luminosity function is consistent with a power law form, n(>L) proportional to L^-1 over 10^41 to 10^42.5 erg/s. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation.
88 - P. Fibla , S. Bovino , R. Riaz 2018
We present here a three-dimesional hydrodynamical simulation for star formation. Our aim is to explore the effect of the metal-line cooling on the thermodynamics of the star-formation process. We explore the effect of changing the metallicty of the gas from $Z/Z_{odot}=10^{-4}$ to $Z/Z_{odot}=10^{-2}$. Furthermore, we explore the implications of using the observational abundance pattern of a CEMP-no star, which have been considered to be the missing second-generation stars, the so-called Pop. III.2 stars. In order to pursue our aim, we modelled the microphysics by employing the public astrochemistry package KROME, using a chemical network which includes sixteen chemical species (H, H$^{+}$, H$^{-}$, He, He$^{+}$, He$^{++}$, e$^{-}$, H$_{2}$, H$_{2}^{+}$, C, C$^{+}$, O, O$^{+}$, Si, Si$^{+}$, and Si$^{++}$). We couple KROME with the fully three-dimensional Smoothed-particle hydrodynamics (SPH) code GRADSPH. With this framework we investigate the collapse of a metal-enhanced cloud, exploring the fragmentation process and the formation of stars. We found that the metallicity has a clear impact on the thermodynamics of the collapse, allowing the cloud to reach the CMB temperature floor for a metallicity $Z/Z_{odot}=10^{-2}$, which is in agreement with previous work. Moreover, we found that adopting the abundance pattern given by the star SMSS J031300.36-670839.3 the thermodynamics behavior is very similar to simulations with a metallicity of $Z/Z_{odot}=10^{-2}$, due to the high carbon abundance. As long as only metal line cooling is considered, our results support the metallicity threshold proposed by previous works, which will very likely regulate the first episode of fragmentation and potentially determine the masses of the resulting star clusters.
Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of $sim 3 times 10^{7}~M_{odot}$, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of $lesssim 0.1$ pc and the galactic disk simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with $gtrsim 10^{4}~M_{odot}$ within $sim 2~{rm Myr}$. Only the massive cold clouds with $gtrsim 10^{3}~M_{odot}$ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. In addition, we investigate the dependence of cloud mass function on metallicity and ${rm H_{2}}$ abundance, and show that the cases with low metallicities ($lesssim 10^{-2}~Z_{odot}$) or high ${rm H_{2}}$ abundance ($gtrsim 10^{-3}$) cannot form massive cold clouds with $gtrsim 10^{3}~M_{odot}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا