Do you want to publish a course? Click here

Constraints from a many-body method on spin-independent dark matter scattering off electrons using data from germanium and xenon detectors

139   0   0.0 ( 0 )
 Added by Cheng-Pang Liu
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Scattering of light dark matter (LDM) particles with atomic electrons is studied in the context of effective field theory. Contact and long-range interactions between dark matter and an electron are both considered. A state-of-the-art many-body method is used to evaluate the spin-independent atomic ionization cross sections of LDM-electron scattering, with an estimated error about 20%. New upper limits are derived on parameter space spanned by LDM mass and effective coupling strengths using data from the CDMSlite, XENON10, XENON100, and XENON1T experiments. Comparison with existing calculations shows the importance of atomic structure. Two aspects particularly important are relativistic effect for inner-shell ionization and final-state free electron wave function which sensitively depends on the underlying atomic approaches.



rate research

Read More

Constraints on dark matter from the first CMS and ATLAS SUSY searches are investigated. It is shown that within the minimal supergravity model, the early search for supersymmetry at the LHC has depleted a large portion of the signature space in dark matter direct detection experiments. In particular, the prospects for detecting signals of dark matter in the XENON and CDMS experiments are significantly affected in the low neutralino mass region. Here the relic density of dark matter typically arises from slepton coannihilations in the early universe. In contrast, it is found that the CMS and ATLAS analyses leave untouched the Higgs pole and the Hyperbolic Branch/Focus Point regions, which are now being probed by the most recent XENON results. Analysis is also done for supergravity models with non-universal soft breaking where one finds that a part of the dark matter signature space depleted by the CMS and ATLAS cuts in the minimal SUGRA case is repopulated. Thus, observation of dark matter in the LHC depleted region of minimal supergravity may indicate non-universalities in soft breaking.
The transition magnetic moment of a sterile-to-active neutrino conversion gives rise to not only radiative decay of a sterile neutrino, but also its non-standard interaction (NSI) with matter. For sterile neutrinos of keV-mass as dark matter candidates, their decay signals are actively searched for in cosmic X-ray spectra. In this work, we consider the NSI that leads to atomic ionization, which can be detected by direct dark matter experiments. It is found that this inelastic scattering process for a nonrelativistic sterile neutrino has a pronounced enhancement in the differential cross section at energy transfer about half of its mass, manifesting experimentally as peaks in the measurable energy spectra. The enhancement effects gradually smear out as the sterile neutrino becomes relativistic. Using data taken with germanium detectors that have fine energy resolution in keV and sub-keV regimes, constraints on sterile neutrino mass and its transition magnetic moment are derived and compared with those from astrophysical observations.
With the advent of detectors with sub-keV sensitivities, atomic ionization has been identified as a promising avenue to probe possible neutrino electromagnetic properties. The interaction cross-sections induced by millicharged neutrinos are evaluated with the ab-initio multi-configuration relativistic random-phase approximation. There is significant enhancement at atomic binding energies compared to that when the electrons are taken as free particles. Positive signals would distinctly manifest as peaks at specific energies with known intensity ratios. Selected reactor neutrino data with germanium detectors at analysis threshold as low as 300 eV are studied. No such signatures are observed, and a combined limit on the neutrino charge fraction of | umq | < 1.0 X 10^{-12} at 90% confidence level is derived.
283 - S. Bilmis , I. Turan , T.M. Aliev 2015
A possible manifestation of an additional light gauge boson $A^prime$, named as Dark Photon, associated with a group $U(1)_{rm B-L}$ is studied in neutrino electron scattering experiments. The exclusion plot on the coupling constant $g_{rm B-L}$ and the dark photon mass $M_{A^prime}$ is obtained. It is shown that contributions of interference term between the dark photon and the Standard Model are important. The interference effects are studied and compared with for data sets from TEXONO, GEMMA, BOREXINO, LSND as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space.
We present new observational constraints on the elastic scattering of dark matter with electrons for dark matter masses between 10 keV and 1 TeV. We consider scenarios in which the momentum-transfer cross section has a power-law dependence on the relative particle velocity, with a power-law index $n in {-4,-2,0,2,4,6}$. We search for evidence of dark matter scattering through its suppression of structure formation. Measurements of the cosmic microwave background temperature, polarization, and lensing anisotropy from textit{Planck} 2018 data and of the Milky Way satellite abundance measurements from the Dark Energy Survey and Pan-STARRS1 show no evidence of interactions. We use these data sets to obtain upper limits on the scattering cross section, comparing them with exclusion bounds from electronic recoil data in direct detection experiments. Our results provide the strongest bounds available for dark matter--electron scattering derived from the distribution of matter in the Universe, extending down to sub-MeV dark matter masses, where current direct detection experiments lose sensitivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا