Do you want to publish a course? Click here

Lattice QCD Impact on Determination of the CKM Matrix

85   0   0.0 ( 0 )
 Added by Steven Gottlieb
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We review many lattice QCD calculations that impact the precise determination of the CKM matrix. We focus on decay constants and semileptonic form factors of both light ($pi$ and K) and heavy-light ($D_{(s)}$ and $B_{(s)}$) mesons. Implication of $Lambda_b$ form factors will be shown. When combined with experimental results for branching fractions and differential decay rates, the above calculations strongly constrain the first two rows of the CKM matrix. We discuss a long standing difference between $|V_{ub}|$ and $|V_{cb}|$ as determined from exclusive or inclusive decays.



rate research

Read More

130 - Steven Gottlieb 2020
Lattice QCD is an important tool for theoretical input for flavor physics. There have been four reviews by the Flavour Lattice Averaging Group (FLAG). This talk will review the current status of the magnitude of eight of the nine CKM matrix elements, borrowing heavily from the most recent FLAG review (co-authored by the speaker). Future prospects for improving the determination of the CKM matrix will be discussed.
Matrix elements of six-quark operators are needed to extract new physics constraints from experimental searches for neutron-antineutron oscillations. This work presents in detail the first lattice quantum chromodynamics calculations of the necessary neutron-antineutron transition matrix elements including calculation methods and discussions of systematic uncertainties. Implications of isospin and chiral symmetry on the matrix elements, power counting in the isospin limit, and renormalization of a chiral basis of six-quark operators are discussed. Calculations are performed with a chiral-symmetric discretization of the quark action and physical light quark masses in order to avoid the need for chiral extrapolation. Non-perturbative renormalization is performed, including a study of lattice cutoff effects. Excited-state effects are studied using two nucleon operators and multiple values of source-sink separation. Results for the dominant matrix elements are found to be significantly larger compared to previous results from the MIT bag model. Future calculations are needed to fully account for systematic uncertainties associated with discretization and finite-volume effects but are not expected to significantly affect this conclusion.
The nucleon axial coupling, $g_A$, is a fundamental property of protons and neutrons, dictating the strength with which the weak axial current of the Standard Model couples to nucleons, and hence, the lifetime of a free neutron. The prominence of $g_A$ in nuclear physics has made it a benchmark quantity with which to calibrate lattice QCD calculations of nucleon structure and more complex calculations of electroweak matrix elements in one and few nucleon systems. There were a number of significant challenges in determining $g_A$, notably the notorious exponentially-bad signal-to-noise problem and the requirement for hundreds of thousands of stochastic samples, that rendered this goal more difficult to obtain than originally thought. I will describe the use of an unconventional computation method, coupled with ludicrously fast GPU code, access to publicly available lattice QCD configurations from MILC and access to leadership computing that have allowed these challenges to be overcome resulting in a determination of $g_A$ with 1% precision and all sources of systematic uncertainty controlled. I will discuss the implications of these results for the convergence of $SU(2)$ Chiral Perturbation theory for nucleons, as well as prospects for further improvements to $g_A$ (sub-percent precision, for which we have preliminary results) which is part of a more comprehensive application of lattice QCD to nuclear physics. This is particularly exciting in light of the new CORAL supercomputers coming online, Sierra and Summit, for which our lattice QCD codes achieve a machine-to-machine speed up over Titan of an order of magnitude.
We compare three different methods to determine the lattice spacing in lattice QCD and give results from calculations on the MILC ensembles of configurations that include the effect of $u$, $d$ and $s$ sea quarks. It is useful, for ensemble to ensemble comparison, to express the results as giving a physical value for $r_1$, a parameter from the heavy quark potential. Combining the three methods gives a value for $r_1$ in the continuum limit of 0.3133(23)(3) fm. Using the MILC values for $r_0/r_1$, this corresponds to a value for the $r_0$ parameter of 0.4661(38) fm. We also discuss how to use the $eta_s$ for determining the lattice spacing and tuning the $s$-quark mass accurately, by giving values for $m_{eta_s}$ (0.6858(40) GeV) and $f_{eta_s}$ (0.1815(10) GeV).
The 2012 PDG reports a tension at the level of $3 sigma$ between two exclusive determinations of $|V_{ub}|$. They are obtained by combining the experimental branching ratios of $B to tau u$ and $B to pi l u$ (respectively) with a theoretical computation of the hadronic matrix elements $fB$ and the $B to pi$ form factor $f_+(q^2)$. To understand the tension, improved precision and a careful analysis of the systematics involved are necessary. We report the results of the ALPHA collaboration for $fB$ from the lattice with 2 flavors of $O(a)$ improved Wilson fermions. We employ HQET, including $1/m_b$ corrections, with pion masses ranging down to $approx$ 190 MeV. Renormalization and matching were performed non-perturbatively, and three lattice spacings reaching $a^{-1}approx 4.1$ GeV are used in the continuum extrapolation. We also present progress towards a computation of $f_+(q^2)$, to directly compare two independent exclusive determinations of $|V_{ub}|$ with each other and with inclusive determinations. Additionally, we report on preliminary results for $fBq{s}$, needed for the analysis of $B_s to mu^+mu^-$.}
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا