Do you want to publish a course? Click here

Center Emphasized Visual Saliency and a Contrast-based Full Reference Image Quality Index

403   0   0.0 ( 0 )
 Added by Md Abu Layek
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Objective image quality assessment (IQA) is imperative in the current multimedia-intensive world, in order to assess the visual quality of an image at close to a human level of ability. Many~parameters such as color intensity, structure, sharpness, contrast, presence of an object, etc., draw human attention to an image. Psychological vision research suggests that human vision is biased to the center area of an image and display screen. As a result, if the center part contains any visually salient information, it draws human attention even more and any distortion in that part will be better perceived than other parts. To the best of our knowledge, previous IQA methods have not considered this fact. In this paper, we propose a full reference image quality assessment (FR-IQA) approach using visual saliency and contrast; however, we give extra attention to the center by increasing the sensitivity of the similarity maps in that region. We evaluated our method on three large-scale popular benchmark databases used by most of the current IQA researchers (TID2008, CSIQ~and LIVE), having a total of 3345 distorted images with 28~different kinds of distortions. Our~method is compared with 13 state-of-the-art approaches. This comparison reveals the stronger correlation of our method with human-evaluated values. The prediction-of-quality score is consistent for distortion specific as well as distortion independent cases. Moreover, faster processing makes it applicable to any real-time application. The MATLAB code is publicly available to test the algorithm and can be found online at http://layek.khu.ac.kr/CEQI.

rate research

Read More

In most practical situations, the compression or transmission of images and videos creates distortions that will eventually be perceived by a human observer. Vice versa, image and video restoration techniques, such as inpainting or denoising, aim to enhance the quality of experience of human viewers. Correctly assessing the similarity between an image and an undistorted reference image as subjectively experienced by a human viewer can thus lead to significant improvements in any transmission, compression, or restoration system. This paper introduces the Haar wavelet-based perceptual similarity index (HaarPSI), a novel and computationally inexpensive similarity measure for full reference image quality assessment. The HaarPSI utilizes the coefficients obtained from a Haar wavelet decomposition to assess local similarities between two images, as well as the relative importance of image areas. The consistency of the HaarPSI with the human quality of experience was validated on four large benchmark databases containing thousands of differently distorted images. On these databases, the HaarPSI achieves higher correlations with human opinion scores than state-of-the-art full reference similarity measures like the structural similarity index (SSIM), the feature similarity index (FSIM), and the visual saliency-based index (VSI). Along with the simple computational structure and the short execution time, these experimental results suggest a high applicability of the HaarPSI in real world tasks.
The screen content images (SCIs) usually comprise various content types with sharp edges, in which the artifacts or distortions can be well sensed by the vanilla structure similarity measurement in a full reference manner. Nonetheless, almost all of the current SOTA structure similarity metrics are locally formulated in a single-level manner, while the true human visual system (HVS) follows the multi-level manner, and such mismatch could eventually prevent these metrics from achieving trustworthy quality assessment. To ameliorate, this paper advocates a novel solution to measure structure similarity globally from the perspective of sparse representation. To perform multi-level quality assessment in accordance with the real HVS, the above-mentioned global metric will be integrated with the conventional local ones by resorting to the newly devised selective deep fusion network. To validate its efficacy and effectiveness, we have compared our method with 12 SOTA methods over two widely-used large-scale public SCI datasets, and the quantitative results indicate that our method yields significantly higher consistency with subjective quality score than the currently leading works. Both the source code and data are also publicly available to gain widespread acceptance and facilitate new advancement and its validation.
79 - Xiaoshuai Sun 2018
In this paper, we proposed an integrated model of semantic-aware and contrast-aware saliency combining both bottom-up and top-down cues for effective saliency estimation and eye fixation prediction. The proposed model processes visual information using two pathways. The first pathway aims to capture the attractive semantic information in images, especially for the presence of meaningful objects and object parts such as human faces. The second pathway is based on multi-scale on-line feature learning and information maximization, which learns an adaptive sparse representation for the input and discovers the high contrast salient patterns within the image context. The two pathways characterize both long-term and short-term attention cues and are integrated dynamically using maxima normalization. We investigate two different implementations of the semantic pathway including an End-to-End deep neural network solution and a dynamic feature integration solution, resulting in the SCA and SCAFI model respectively. Experimental results on artificial images and 5 popular benchmark datasets demonstrate the superior performance and better plausibility of the proposed model over both classic approaches and recent deep models.
70 - Nian Liu , Ni Zhang , Kaiyuan Wan 2021
Existing state-of-the-art saliency detection methods heavily rely on CNN-based architectures. Alternatively, we rethink this task from a convolution-free sequence-to-sequence perspective and predict saliency by modeling long-range dependencies, which can not be achieved by convolution. Specifically, we develop a novel unified model based on a pure transformer, namely, Visual Saliency Transformer (VST), for both RGB and RGB-D salient object detection (SOD). It takes image patches as inputs and leverages the transformer to propagate global contexts among image patches. Unlike conventional architectures used in Vision Transformer (ViT), we leverage multi-level token fusion and propose a new token upsampling method under the transformer framework to get high-resolution detection results. We also develop a token-based multi-task decoder to simultaneously perform saliency and boundary detection by introducing task-related tokens and a novel patch-task-attention mechanism. Experimental results show that our model outperforms existing methods on both RGB and RGB-D SOD benchmark datasets. Most importantly, our whole framework not only provides a new perspective for the SOD field but also shows a new paradigm for transformer-based dense prediction models. Code is available at https://github.com/nnizhang/VST.
81 - Wei Sun , Tao Wang , Xiongkuo Min 2021
In this paper, we propose a deep learning based video quality assessment (VQA) framework to evaluate the quality of the compressed users generated content (UGC) videos. The proposed VQA framework consists of three modules, the feature extraction module, the quality regression module, and the quality pooling module. For the feature extraction module, we fuse the features from intermediate layers of the convolutional neural network (CNN) network into final quality-aware feature representation, which enables the model to make full use of visual information from low-level to high-level. Specifically, the structure and texture similarities of feature maps extracted from all intermediate layers are calculated as the feature representation for the full reference (FR) VQA model, and the global mean and standard deviation of the final feature maps fused by intermediate feature maps are calculated as the feature representation for the no reference (NR) VQA model. For the quality regression module, we use the fully connected (FC) layer to regress the quality-aware features into frame-level scores. Finally, a subjectively-inspired temporal pooling strategy is adopted to pool frame-level scores into the video-level score. The proposed model achieves the best performance among the state-of-the-art FR and NR VQA models on the Compressed UGC VQA database and also achieves pretty good performance on the in-the-wild UGC VQA databases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا