No Arabic abstract
Apart from the difficulty of producing highly scattering samples, a major challenge in the observation of Anderson localization of 3D light is identifying an unambiguous signature of the phase transition in experimentally feasible situations. In this letter we establish a clear correspondence between the collapse of the conductance, the increase in intensity fluctuations at the localization transition and the scaling analysis results based on the Thouless number, thus connecting the macroscopic and microscopic approaches of localization. Furthermore, the transition thus inferred is fully compatible both with the results based on the eigenvalue analysis of the microscopic description and with the effective-medium Ioffe-Regel criterion.
We experimentally observe the spatial intensity statistics of light transmitted through three-dimensional isotropic scattering media. The intensity distributions measured through layers consisting of zinc oxide nanoparticles differ significantly from the usual Rayleigh statistics associated with speckle, and instead are in agreement with the predictions of mesoscopic transport theory, taking into account the known material parameters of the samples. Consistent with the measured spatial intensity fluctuations, the total transmission fluctuates. The magnitude of the fluctuations in the total transmission is smaller than expected on the basis of quasi-one-dimensional (1D) transport theory, which indicates that quasi-1D theories cannot fully describe these open three-dimensional media.
We study two coupled 3D lattices, one of them featuring uncorrelated on-site disorder and the other one being fully ordered, and analyze how the interlattice hopping affects the localization-delocalization transition of the former and how the latter responds to it. We find that moderate hopping pushes down the critical disorder strength for the disordered channel throughout the entire spectrum compared to the usual phase diagram for the 3D Anderson model. In that case, the ordered channel begins to feature an effective disorder also leading to the emergence of mobility edges but with higher associated critical disorder values. Both channels become pretty much alike as their hopping strength is further increased, as expected. We also consider the case of two disordered components and show that in the presence of certain correlations among the parameters of both lattices, one obtains a disorder-free channel decoupled from the rest of the system.
We describe and demonstrate how 3D magnetic field alignment can be inferred from single absorption images of an atomic cloud. While optically pumped magnetometers conventionally rely on temporal measurement of the Larmor precession of atomic dipoles, here a cold atomic vapour provides a spatial interface between vector light and external magnetic fields. Using a vector vortex beam, we inscribe structured atomic spin polarisation in a cloud of cold rubidium atoms, and record images of the resulting absorption patterns. The polar angle of an external magnetic field can be deduced with spatial Fourier analysis. This effect presents an alternative concept for detecting magnetic vector fields, and demonstrates, more generally, how introducing spatial phases between atomic energy levels can translate transient effects to the spatial domain.
We investigate theoretically and experimentally fluctuations of high spin (F>1/2) beyond the linear response regime and demonstrate dramatic modifications of the spin noise spectra in the high power density probe field. Several effects related to an interplay of high spin and perturbation are predicted theoretically and revealed experimentally, including strong sensitivity of the spin noise spectra to the mutual orientation of the probe polarization plane and magnetic field direction, appearance of high harmonics of the Larmor frequency in the spin noise and the fine structure of the Larmor peaks. We demonstrate the ability of the spin-noise spectroscopy to access the nonlinear effects related to the renormalization of the spin states by strong electromagnetic fields.
We reduce the intensity noise of laser light by using an electro-optic modulator and a cousto-optic modulator in series. The electro-optic modulator reduces noise at high frequency(10 kHz to 1 MHz), while the acousto-optic modulator sets the average power of the light and reduces noise at low frequency (up to 10 kHz). The light is then used to trap single sodium atoms in an optical tweezer, where the lifetime of the atoms is limited by parametric heating due to laser noise at twice the trapping frequency. With our noise eater, the noise is reduced by up to 15 dB at these frequencies, and the lifetime is increased by an order of magnitude to around 6 seconds. Our technique is general and acts directly on the laser beam, expanding laser options for sensitive optical trapping applications.