Nonlocal generalization of Galilean theories and gravity


Abstract in English

In this paper we propose a wider class of symmetries including the Galilean shift symmetry as a subclass. We will show how to construct ghost-free nonlocal actions, consisting of infinite derivative operators, which are invariant under such symmetries, but whose functional form is not simply given by exponentials of entire functions. Motivated by this, we will consider the case of a scalar field and discuss the pole structure of the propagator which has infinitely many complex conjugate poles, but satisfies the tree-level unitarity. We will also consider the possibility to construct UV complete Galilean theories by showing how the ultraviolet behavior of loop integrals can be ameliorated. Moreover, we will consider kinetic operators respecting the same symmetries in the context of linearized gravity. In such a scenario, the graviton propagator turns out to be ghost-free and the spacetime metric generated by a point-like source is nonsingular. These new nonlocal models can be seen as an infinite derivative generalization of Lee-Wick theories and open a new branch of nonlocal theories.

Download