Molecular dynamics at an energy-level crossing


Abstract in English

This paper is a continuation of a previous work about the study of the survival probability modelizing the molecular predissociation in the Born-Oppenheimer framework. Here we consider the critical case where the reference energy corresponds to the value of a crossing of two electronic levels, one of these two levels being confining while the second dissociates. We show that the survival probability associated to a certain initial state is a sum of the usual time-dependent exponential contribution, and a reminder term that is jointly polynomially small with respect to the time and the semiclassical parameter. We also compute explicitly the main contribution of the remainder.

Download