Do you want to publish a course? Click here

Towards distinguishing variants of non-minimal inflation

130   0   0.0 ( 0 )
 Added by Tommi Tenkanen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study models of inflation where the scalar field $phi$ that drives inflation is coupled non-minimally to gravity via $xi phi^2 R$, or where the gravity sector is enlarged by an $R^2$ term. We consider the original Higgs inflation, Starobinsky inflation, and two differe



rate research

Read More

133 - Taotao Qiu , Yu-Tong Wang 2015
We study a nonsingular bounce inflation model, which can drive the early universe from a contracting phase, bounce into an ordinary inflationary phase, followed by the reheating process. Besides the bounce that avoided the Big-Bang singularity which appears in the standard cosmological scenario, we make use of the Horndesky theory and design the kinetic and potential forms of the lagrangian, so that neither of the two big problems in bouncing cosmology, namely the ghost and the anisotropy problems, will appear. The cosmological perturbations can be generated either in the contracting phase or in the inflationary phase, where in the latter the power spectrum will be scale-invariant and fit the observational data, while in the former the perturbations will have nontrivial features that will be tested by the large scale structure experiments. We also fit our model to the CMB TT power spectrum.
We derive the consistency relations for a chaotic inflation model with a non-minimal coupling to gravity. For a quadratic potential in the limit of a small non-minimal coupling parameter $xi$ and for a quartic potential without assuming small $xi$, we give the consistency relations among the spectral index $n_s$, the tensor-to-scalar ratio $r$ and the running of the spectral index $alpha$. We find that unlike $r$, $alpha$ is less sensitive to $xi$. If $r<0.1$, then $xi$ is constrained to $xi<0$ and $alpha$ is predicted to be $alphasimeq -8times 10^{-4}$ for a quartic potential. For a general monomial potential, $alpha$ is constrained in the range $-2.7times 10^{-3}<alpha< -6times 10^{-4}$ as long as $|xi|leq 10^{-3}$ if $r<0.1$.
126 - Xian Gao , Jinn-Ouk Gong 2015
We investigate the consequences of general curved trajectories in multi-field inflation. After setting up a completely general formalism using the mass basis, which naturally accommodates the notion of light and heavy modes, we study in detail the simple case of two successive turns in two-field system. We find the power spectrum of the curvature perturbation receives corrections that exhibit oscillatory features sinusoidal in the logarithm of the comoving wavenumber without slow-roll suppression. We show that this is because of the resonance of the heavy modes inside and outside the mass horizon.
301 - David Wands (ICG , Portsmouth , 2010
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non-linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition - such as in the case of smooth transition or some sharp transition scenarios - the $mathcal{O}(1)$ local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا